Marion Giraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8047975/publications.pdf

Version: 2024-02-01

28 papers 1,408 citations

471509 17 h-index 28 g-index

28 all docs $\begin{array}{c} 28 \\ \text{docs citations} \end{array}$

28 times ranked

2291 citing authors

#	Article	IF	CITATIONS
1	Co–Ru Nanoalloy Catalysts for the Acceptorless Dehydrogenation of Alcohols. ACS Applied Nano Materials, 2022, 5, 5733-5744.	5.0	3
2	The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nature Communications, 2021, 12, 3935.	12.8	56
3	Electrochemical Active Surface Area Determination of Iridiumâ€Based Mixed Oxides by Mercury Underpotential Deposition. ChemElectroChem, 2021, 8, 3519-3524.	3.4	17
4	Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates. Materials Horizons, 2020, 7, 541-550.	12.2	13
5	Importance of the decoration in shaped cobalt nanoparticles in the acceptor-less secondary alcohol dehydrogenation. Catalysis Science and Technology, 2020, 10, 4923-4937.	4.1	14
6	On the importance of the crystalline surface structure on the catalytic activity and stability of tailored unsupported cobalt nanoparticles for the solvent-free acceptor-less alcohol dehydrogenation. Journal of Colloid and Interface Science, 2020, 573, 165-175.	9.4	9
7	Impact of noble-metals on the catalytic stability of cobalt nanoparticles for the acceptorless dehydrogenation of alcohols. Catalysis Today, 2019, 333, 97-104.	4.4	9
8	Porous Electrocatalysts: Hierarchically Structured Ultraporous Iridium-Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers (Adv. Energy Mater.) Tj ETQq0 0 0 rgB	T/ ©we rloo	:k 110 Tf 50 45
9	One-Pot Seed-Mediated Growth of Co Nanoparticles by the Polyol Process: Unraveling the Heterogeneous Nucleation. Nano Letters, 2019, 19, 9160-9169.	9.1	25
10	Hierarchically Structured Ultraporous Iridiumâ€Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers. Advanced Energy Materials, 2019, 9, 1802136.	19.5	72
11	Unsupported shaped cobalt nanoparticles as efficient and recyclable catalysts for the solvent-free acceptorless dehydrogenation of alcohols. Catalysis Science and Technology, 2018, 8, 562-572.	4.1	20
12	pH-dependence on HER electrocatalytic activity of iron sulfide pyrite nanoparticles. Electrochemistry Communications, 2018, 91, 10-14.	4.7	24
13	The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews, 2018, 47, 5187-5233.	38.1	390
14	Hollow Iridium-Based Catalysts for the Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolyzers. ECS Transactions, 2017, 80, 1077-1084.	0.5	3
15	Nanodiffusion in electrocatalytic films. Nature Materials, 2017, 16, 1016-1021.	27.5	34
16	Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catalysis, 2016, 6, 2626-2631.	11.2	105
17	Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen Evolution in Neutral Water. ACS Catalysis, 2014, 4, 681-687.	11.2	164
18	Control of the anisotropic shape of cobalt nanorods in the liquid phase: from experiment to theory… and back. Nanoscale, 2014, 6, 2682.	5.6	39

#	Article	IF	CITATIONS
19	Photoluminescent properties of new quantum dot nanoparticles/carbon nanotubes hybrid structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 138-144.	4.7	10
20	Multiscale Approach of Photochromism: Synthesis and Photochromic Properties of a Diarylethene in Solution, in Nanoparticles, and in Bulk Crystals. Advanced Materials, 2009, 21, 309-313.	21.0	70
21	Easy and efficient tuning of the photochromic properties of 1,2-bis[5′-methyl-2′-(2″-pyridyl)thiazolyl]perfluorocyclopentene. Tetrahedron Letters, 2009, 50, 1485-148	89 ^{1.4}	5
22	Structural and Photophysical Studies of Highly Stable Lanthanide Complexes of Tripodal 8-Hydroxyquinolinate Ligands Based on 1,4,7-Triazacyclononane. Inorganic Chemistry, 2009, 48, 4207-4218.	4.0	80
23	Photo-controlled release and uptake of Cu(hfac)2 in solution for a binuclear copper complex with a photochromic dithiazolylethene bridging ligand. New Journal of Chemistry, 2009, 33, 1380.	2.8	16
24	Photoswitching in diarylethene nanoparticles, a trade-off between bulk solid and solution: towards balanced photochromic and fluorescent properties. New Journal of Chemistry, 2009, 33, 1420.	2.8	37
25	Efficient Sensitization of Lanthanide Luminescence by Tetrazole-Based Polydentate Ligands. Inorganic Chemistry, 2008, 47, 3952-3954.	4.0	89
26	Determination of the rate of a fast exchanging coordinated molecule in a lanthanide(iii) complex by proton NMR. Physical Chemistry Chemical Physics, 2008, 10, 5817.	2.8	4
27	Dithiazolylethene-based molecular switches for nonlinear optical properties and fluorescence: synthesis, crystal structure and ligating properties. Journal of Materials Chemistry, 2007, 17, 4414.	6.7	53
28	Synthesis and photochromism of two new 1,2-bis(thiazolyl)perfluorocyclopentenes with chelating sites. New Journal of Chemistry, 2005, 29, 439-446.	2.8	46