

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8047854/publications.pdf Version: 2024-02-01

| 219<br>papers | 7,858<br>citations | 41258<br>49<br>h-index | 76769<br>74<br>g-index |
|---------------|--------------------|------------------------|------------------------|
| 221           | 221                | 221                    | 4957                   |
| all docs      | docs citations     | times ranked           | citing authors         |

| #  | Article                                                                                                                                                                             | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A, 2017, 5, 2355-2364.                        | 5.2 | 413       |
| 2  | Additively manufactured biodegradable porous magnesium. Acta Biomaterialia, 2018, 67, 378-392.                                                                                      | 4.1 | 273       |
| 3  | Additively manufactured biodegradable porous iron. Acta Biomaterialia, 2018, 77, 380-393.                                                                                           | 4.1 | 185       |
| 4  | Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester:<br>Synthesis and proof of concept. Progress in Organic Coatings, 2011, 70, 142-149. | 1.9 | 166       |
| 5  | Triple-Action Self-Healing Protective Coatings Based on Shape Memory Polymers Containing<br>Dual-Function Microspheres. ACS Applied Materials & Interfaces, 2018, 10, 23369-23379.  | 4.0 | 152       |
| 6  | Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects.<br>Corrosion Science, 2016, 112, 138-149.                                          | 3.0 | 123       |
| 7  | Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers. Chemical Engineering Journal, 2021, 404, 127118.                      | 6.6 | 122       |
| 8  | The effect of inhibitor structure on the corrosion of AA2024 and AA7075. Corrosion Science, 2011, 53, 2184-2190.                                                                    | 3.0 | 119       |
| 9  | A rapid screening multi-electrode method for the evaluation of corrosion inhibitors. Electrochimica Acta, 2009, 54, 3402-3411.                                                      | 2.6 | 97        |
| 10 | Time–frequency methods for trend removal in electrochemical noise data. Electrochimica Acta, 2012,<br>70, 199-209.                                                                  | 2.6 | 97        |
| 11 | Fabrication and characterization of graphene-based carbon hollow spheres for encapsulation of organic corrosion inhibitors. Chemical Engineering Journal, 2018, 352, 909-922.       | 6.6 | 97        |
| 12 | Additively manufactured biodegradable porous zinc. Acta Biomaterialia, 2020, 101, 609-623.                                                                                          | 4.1 | 95        |
| 13 | Unravelling the corrosion inhibition mechanisms of bi-functional inhibitors by EIS and SEM–EDS.<br>Corrosion Science, 2013, 69, 346-358.                                            | 3.0 | 93        |
| 14 | SECM study of defect repair in self-healing polymer coatings on metals. Electrochemistry Communications, 2011, 13, 169-173.                                                         | 2.3 | 89        |
| 15 | Novel time–frequency characterization of electrochemical noise data in corrosion studies using<br>Hilbert spectra. Corrosion Science, 2013, 66, 97-110.                             | 3.0 | 88        |
| 16 | Scanning electrochemical microscopy to study the effect of crystallographic orientation on the electrochemical activity of pure copper. Electrochimica Acta, 2014, 116, 89-96.      | 2.6 | 87        |
| 17 | Simplistic correlations between molecular electronic properties and inhibition efficiencies: Do they really exist?. Corrosion Science, 2021, 179, 108856.                           | 3.0 | 86        |
| 18 | Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces. Surface and<br>Coatings Technology, 2013, 236, 284-289.                                     | 2.2 | 82        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corrosion Science, 2020, 170, 108697.                                                                            | 3.0 | 82        |
| 20 | The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings. Faraday Discussions, 2015, 180, 511-526.                                                                     | 1.6 | 81        |
| 21 | pH responsive Ce(III) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3.<br>Progress in Organic Coatings, 2016, 99, 197-209.                                                                       | 1.9 | 81        |
| 22 | The characterisation and performance of Ce(dbp)3-inhibited epoxy coatings. Progress in Organic Coatings, 2011, 70, 91-101.                                                                                                        | 1.9 | 77        |
| 23 | Comparison of the synergistic effects of inhibitor mixtures tailored for enhanced corrosion protection of bare and coated AA2024-T3. Surface and Coatings Technology, 2016, 303, 342-351.                                         | 2.2 | 76        |
| 24 | Unravelling the Chemical Influence of Water on the PMMA/Aluminum Oxide Hybrid Interface In Situ.<br>Scientific Reports, 2017, 7, 13341.                                                                                           | 1.6 | 76        |
| 25 | On the importance of irreversibility of corrosion inhibitors for active coating protection of AA2024-T3. Corrosion Science, 2018, 140, 272-285.                                                                                   | 3.0 | 75        |
| 26 | A Novel Approach for the Evaluation of Under Deposit Corrosion in Marine Environments Using<br>Combined Analysis by Electrochemical Impedance Spectroscopy and Electrochemical Noise.<br>Electrochimica Acta, 2016, 217, 226-241. | 2.6 | 74        |
| 27 | The influence of pH on corrosion inhibitor selection for 2024-T3 aluminium alloy assessed by<br>high-throughput multielectrode and potentiodynamic testing. Electrochimica Acta, 2010, 55, 2457-2465.                             | 2.6 | 73        |
| 28 | Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys. Corrosion Science, 2020, 177, 108947.                                                                     | 3.0 | 73        |
| 29 | Enhanced corrosion protection of mild steel by the synergetic effect of zinc aluminum polyphosphate and 2-mercaptobenzimidazole inhibitors incorporated in epoxy-polyamide coatings. Corrosion Science, 2018, 138, 372-379.       | 3.0 | 69        |
| 30 | A comparison of the interfacial bonding properties of carboxylic acid functional groups on zinc and iron substrates. Electrochimica Acta, 2011, 56, 1904-1911.                                                                    | 2.6 | 68        |
| 31 | Shape memory composite (SMC) self-healing coatings for corrosion protection. Progress in Organic Coatings, 2016, 97, 261-268.                                                                                                     | 1.9 | 68        |
| 32 | Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. International Journal of Adhesion and Adhesives, 2020, 96, 102450.                                                  | 1.4 | 68        |
| 33 | Transient analysis through Hilbert spectra of electrochemical noise signals for the identification of<br>localized corrosion of stainless steel. Electrochimica Acta, 2013, 104, 84-93.                                           | 2.6 | 66        |
| 34 | A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings. Electrochimica Acta, 2011, 56, 9619-9626.                                               | 2.6 | 65        |
| 35 | A combinatorial matrix of rare earth chloride mixtures as corrosion inhibitors of AA2024-T3:<br>Optimisation using potentiodynamic polarisation and EIS. Electrochimica Acta, 2012, 67, 95-103.                                   | 2.6 | 64        |
| 36 | Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic<br>environments. Water Research, 2022, 219, 118553.                                                                                      | 5.3 | 63        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Critical Appraisal of the Interpretation of Electrochemical Noise for Corrosion Studies. Corrosion, 2014, 70, 971-987.                                                                                                       | 0.5 | 62        |
| 38 | Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium<br>in organic coatings for the protection of aluminum alloys. Journal of Coatings Technology Research,<br>2016, 13, 557-566. | 1.2 | 61        |
| 39 | A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys. Corrosion Science, 2016, 113, 160-171.                                                                                                            | 3.0 | 61        |
| 40 | In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation. Corrosion Science, 2020, 177, 108912.                                                                    | 3.0 | 61        |
| 41 | A combined redox-competition and negative-feedback SECM study of self-healing anticorrosive coatings. Electrochemistry Communications, 2011, 13, 1094-1097.                                                                    | 2.3 | 59        |
| 42 | Self-healing epoxy nanocomposite coatings based on dual-encapsulation of nano-carbon hollow spheres with film-forming resin and curing agent. Composites Part B: Engineering, 2019, 175, 107087.                               | 5.9 | 57        |
| 43 | Mechanical and Corrosion Protection Properties of a Smart Composite Epoxy Coating with<br>Dual-Encapsulated Epoxy/Polyamine in Carbon Nanospheres. Industrial & Engineering Chemistry<br>Research, 2019, 58, 3033-3046.        | 1.8 | 55        |
| 44 | Influence of HEPES buffer on the local pH and formation of surface layer during in vitro degradation<br>tests of magnesium in DMEM. Progress in Natural Science: Materials International, 2014, 24, 531-538.                   | 1.8 | 54        |
| 45 | Ship ballast tanks a review from microbial corrosion and electrochemical point of view. Ocean Engineering, 2013, 70, 188-200.                                                                                                  | 1.9 | 53        |
| 46 | Aminobenzoate modified MgAl hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications. Construction and Building Materials, 2013, 47, 1436-1443.                                           | 3.2 | 53        |
| 47 | The influence of copper content on intergranular corrosion of model AlMgSi(Cu) alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 670-675.                                                                  | 0.8 | 52        |
| 48 | Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy. Surface and Coatings Technology, 2014, 254, 277-283.                                                                 | 2.2 | 52        |
| 49 | Protective Film Formation on AA2024-T3 Aluminum Alloy by Leaching of Lithium Carbonate from an Organic Coating. Journal of the Electrochemical Society, 2016, 163, C45-C53.                                                    | 1.3 | 52        |
| 50 | Extrusion-based 3D printed biodegradable porous iron. Acta Biomaterialia, 2021, 121, 741-756.                                                                                                                                  | 4.1 | 52        |
| 51 | The relationship between spectral and wavelet techniques for noise analysis. Electrochimica Acta, 2016, 202, 277-287.                                                                                                          | 2.6 | 50        |
| 52 | Electrochemical Evaluation of Corrosion Inhibiting Layers Formed in a Defect from Lithium-Leaching<br>Organic Coatings. Journal of the Electrochemical Society, 2017, 164, C396-C406.                                          | 1.3 | 50        |
| 53 | An integrated approach in the time, frequency and time-frequency domain for the identification of corrosion using electrochemical noise. Electrochimica Acta, 2016, 222, 627-640.                                              | 2.6 | 49        |
| 54 | Study of the formation of a protective layer in a defect from lithium-leaching organic coatings.<br>Progress in Organic Coatings, 2016, 99, 80-90.                                                                             | 1.9 | 49        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review. Frontiers of Chemical Science and Engineering, 2017, 11, 465-482.                                       | 2.3 | 49        |
| 56 | Effects of Zinc Surface Acid-Based Properties on Formation Mechanisms and Interfacial Bonding<br>Properties of Zirconium-Based Conversion Layers. Journal of Physical Chemistry C, 2012, 116, 8426-8436.          | 1.5 | 48        |
| 57 | Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules. Applied Surface Science, 2017, 423, 817-828.                              | 3.1 | 48        |
| 58 | Durable lubricant-infused anodic aluminum oxide surfaces with high-aspect-ratio nanochannels.<br>Chemical Engineering Journal, 2019, 368, 138-147.                                                                | 6.6 | 47        |
| 59 | Role of Surface Oxide Properties on the Aluminum/Epoxy Interfacial Bonding. Journal of Physical<br>Chemistry C, 2013, 117, 4480-4487.                                                                             | 1.5 | 46        |
| 60 | Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Communications Materials, 2021, 2, .                                         | 2.9 | 46        |
| 61 | High-throughput channel arrays for inhibitor testing: Proof of concept for AA2024-T3. Corrosion<br>Science, 2009, 51, 2279-2290.                                                                                  | 3.0 | 44        |
| 62 | XPS Analysis of the Surface Chemistry and Interfacial Bonding of Barrier-Type Cr(VI)-Free Anodic<br>Oxides. Journal of Physical Chemistry C, 2015, 119, 19967-19975.                                              | 1.5 | 44        |
| 63 | Effect of Anodic Aluminum Oxide Chemistry on Adhesive Bonding of Epoxy. Journal of Physical<br>Chemistry C, 2016, 120, 19670-19677.                                                                               | 1.5 | 44        |
| 64 | Probing the formation and degradation of chemical interactions from model molecule/metal oxide to buried polymer/metal oxide interfaces. Npj Materials Degradation, 2019, 3, .                                    | 2.6 | 44        |
| 65 | The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys. Applied Surface Science, 2016, 366, 339-347.                               | 3.1 | 43        |
| 66 | A filiform corrosion and potentiodynamic polarisation study of some aluminium alloys. Journal of<br>Materials Science, 2000, 35, 1629-1639.                                                                       | 1.7 | 42        |
| 67 | A new high-throughput method for corrosion testing. Corrosion Science, 2012, 58, 327-331.                                                                                                                         | 3.0 | 42        |
| 68 | The influence of a Zr-based conversion treatment on interfacial bonding strength and stability of epoxy coated carbon steel. Progress in Organic Coatings, 2017, 105, 29-36.                                      | 1.9 | 42        |
| 69 | Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy. Surface and<br>Coatings Technology, 2019, 359, 414-425.                                                                       | 2.2 | 42        |
| 70 | Scanning Kelvin probe force microscopy as a means of predicting the electrochemical characteristics of the surface of a modified AA4xxx/AA3xxx (Al alloys) brazing sheet. Electrochimica Acta, 2013, 88, 330-339. | 2.6 | 41        |
| 71 | Electrodeposition of Zn–Co and Zn–Co–Fe alloys from acidic chloride electrolytes. Surface and<br>Coatings Technology, 2007, 202, 84-90.                                                                           | 2.2 | 39        |
| 72 | Scanning Kelvin Probe Study of (Oxyhydr)oxide Surface of Aluminum Alloy. Journal of Physical<br>Chemistry C, 2012, 116, 1805-1811.                                                                                | 1.5 | 39        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Detection of microbiologically influenced corrosion by electrochemical noise transients.<br>Electrochimica Acta, 2014, 136, 223-232.                                                                                                   | 2.6 | 39        |
| 74 | Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications. Materials Science and Engineering C, 2017, 79, 647-660.                                                                         | 3.8 | 39        |
| 75 | Mechanism of Passive Layer Formation on AA2024-T3 from Alkaline Lithium Carbonate Solutions in the Presence of Sodium Chloride. Journal of the Electrochemical Society, 2018, 165, C60-C70.                                            | 1.3 | 39        |
| 76 | Application of transient analysis using Hilbert spectra of electrochemical noise to the identification of corrosion inhibition. Electrochimica Acta, 2014, 116, 355-365.                                                               | 2.6 | 38        |
| 77 | Compositional study of a corrosion protective layer formed by leachable lithium salts in a coating defect on AA2024-T3 aluminium alloys. Progress in Organic Coatings, 2018, 119, 65-75.                                               | 1.9 | 37        |
| 78 | ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial<br>sensitive tool to study corrosion inhibitors for magnesium substrates. Electrochimica Acta, 2020, 345,<br>136166.                 | 2.6 | 37        |
| 79 | An in situ study of zirconium-based conversion treatment on zinc surfaces. Applied Surface Science, 2015, 356, 837-843.                                                                                                                | 3.1 | 36        |
| 80 | In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systems. Scientific Reports, 2017, 7, 45123.                                                            | 1.6 | 36        |
| 81 | The effect of two types of modified Mg-Al hydrotalcites on reinforcement corrosion in cement mortar. Cement and Concrete Research, 2017, 100, 186-202.                                                                                 | 4.6 | 36        |
| 82 | Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm. Corrosion Science, 2022, 199, 110159.                                                                   | 3.0 | 36        |
| 83 | Cathodic inhibition and anomalous electrodeposition of Zn–Co alloys. Electrochimica Acta, 2007, 52, 5444-5452.                                                                                                                         | 2.6 | 35        |
| 84 | Molecular Interactions of Electroadsorbed Carboxylic Acid and Succinic Anhydride Monomers on Zinc Surfaces. Journal of Physical Chemistry C, 2011, 115, 17054-17067.                                                                   | 1.5 | 33        |
| 85 | The effect of brazing process on microstructure evolution and corrosion performance of a modified AA4XXX/AA3XXX brazing sheet. Corrosion Science, 2012, 58, 242-250.                                                                   | 3.0 | 33        |
| 86 | In Situ Study of Buried Metal–Polymer Interfaces Exposed to an Aqueous Solution by an Integrated<br>ATR-FTIR and Electrochemical Impedance Spectroscopy System. Journal of Physical Chemistry C, 2013,<br>117, 20826-20832.            | 1.5 | 32        |
| 87 | Interface strength and degradation of adhesively bonded porous aluminum oxides. Npj Materials<br>Degradation, 2017, 1, .                                                                                                               | 2.6 | 32        |
| 88 | Quasi in situ analytical TEM to investigate electrochemically induced microstructural changes in alloys: AA2024-T3 as an example. Corrosion Science, 2013, 69, 221-225.                                                                | 3.0 | 31        |
| 89 | Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by<br>combined hard anodizing and electrochemical barrier layer thinning. Journal of Electroanalytical<br>Chemistry, 2018, 809, 59-66. | 1.9 | 31        |
| 90 | Active and passive protection of AA2024-T3 by a hybrid inhibitor doped mesoporous sol–gel and top coating system. Surface and Coatings Technology, 2016, 303, 352-361.                                                                 | 2.2 | 30        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection. Surface and Coatings Technology, 2021, 419, 127251.                                                                       | 2.2 | 30        |
| 92  | Corrosion resistance of Zn–Co–Fe alloy coatings on high strength steel. Surface and Coatings<br>Technology, 2009, 203, 1415-1422.                                                                                | 2.2 | 29        |
| 93  | Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments. , 0, , .                                                                                            |     | 29        |
| 94  | Electrodeposition of mixed chromium metal-carbide-oxide coatings from a trivalent<br>chromium-formate electrolyte without a buffering agent. Electrochimica Acta, 2015, 173, 819-826.                            | 2.6 | 29        |
| 95  | Localised corrosion: general discussion. Faraday Discussions, 2015, 180, 381-414.                                                                                                                                | 1.6 | 29        |
| 96  | Friction surface cladding: An exploratory study of a new solid state cladding process. Journal of<br>Materials Processing Technology, 2016, 229, 769-784.                                                        | 3.1 | 29        |
| 97  | The use of odd random phase electrochemical impedance spectroscopy to study lithium-based corrosion inhibition by active protective coatings. Electrochimica Acta, 2018, 278, 363-373.                           | 2.6 | 29        |
| 98  | Tailoring the release of encapsulated corrosion inhibitors from damaged coatings: Controlled release kinetics by overlapping diffusion fronts. Progress in Organic Coatings, 2012, 75, 20-27.                    | 1.9 | 28        |
| 99  | Active corrosion protection of various aluminium alloys by lithiumâ€leaching coatings. Surface and Interface Analysis, 2019, 51, 1276-1287.                                                                      | 0.8 | 28        |
| 100 | Combined Corrosion and Wear of Aluminium Alloy 7075-T6. Journal of Bio- and Tribo-Corrosion, 2016, 2, 1.                                                                                                         | 1.2 | 27        |
| 101 | The chemical throwing power of lithium-based inhibitors from organic coatings on AA2024-T3.<br>Corrosion Science, 2019, 150, 194-206.                                                                            | 3.0 | 27        |
| 102 | Chemisorption of polyester coatings on zirconium-based conversion coated multi-metal substrates and their stability in aqueous environment. Applied Surface Science, 2020, 508, 144771.                          | 3.1 | 27        |
| 103 | A morphological study of filiform corrosive attack on chromated and alkaline-cleaned AA2024-T351 aluminium alloy. Corrosion Science, 2004, 46, 1201-1224.                                                        | 3.0 | 26        |
| 104 | The effect of time evolution and timing of the electrochemical data recording of corrosion inhibitor protection of hot-dip galvanized steel. Corrosion Science, 2020, 173, 108780.                               | 3.0 | 26        |
| 105 | A morphological study of filiform corrosive attack on cerated AA2024-T351 aluminium alloy.<br>Corrosion Science, 2005, 47, 107-124.                                                                              | 3.0 | 25        |
| 106 | An integrated study on the effect of pre- and post-extrusion heat treatments and surface treatment on the filiform corrosion properties of an aluminium extrusion alloy. Corrosion Science, 2005, 47, 2711-2730. | 3.0 | 25        |
| 107 | Characterization of the passive layer on ferrite and austenite phases of super duplex stainless steel.<br>Applied Surface Science, 2019, 496, 143634.                                                            | 3.1 | 25        |
| 108 | Influence of pretreatments and aging on the adhesion performance of epoxy-coated aluminum.<br>Surface and Coatings Technology, 2013, 215, 260-265.                                                               | 2.2 | 24        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | An investigation of rare earth chloride mixtures: combinatorial optimisation for AA2024â€ŧ3 corrosion inhibition. Surface and Interface Analysis, 2010, 42, 170-174.                                                                                  | 0.8 | 23        |
| 110 | In Situ Study of Buried Interfacial Bonding Mechanisms of Carboxylic Polymers on Zn Surfaces.<br>Journal of Physical Chemistry C, 2013, 117, 3374-3382.                                                                                               | 1.5 | 23        |
| 111 | An investigation of the corrosion inhibitive layers generated from lithium oxalateâ€containing organic coating on AA2024â€T3 aluminium alloy. Surface and Interface Analysis, 2016, 48, 798-803.                                                      | 0.8 | 23        |
| 112 | Smart protective coatings with selfâ€sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers. Corrosion Science, 2022, 200, 110254.                                                            | 3.0 | 23        |
| 113 | Water uptake in thin nylon 6 films as measured by electrochemical impedance spectroscopy and magnetic resonance imaging. Electrochimica Acta, 2013, 94, 219-228.                                                                                      | 2.6 | 22        |
| 114 | An infrared spectroscopic study of sodium silicate adsorption on porous anodic alumina. Surface and<br>Interface Analysis, 2013, 45, 1098-1104.                                                                                                       | 0.8 | 22        |
| 115 | Application of In Situ Liquid Cell Transmission Electron Microscopy in Corrosion Studies: A Critical Review of Challenges and Achievements. Corrosion, 2020, 76, 4-17.                                                                                | 0.5 | 22        |
| 116 | Optimization of intrinsic self-healing silicone coatings by benzotriazole loaded mesoporous silica.<br>Surface and Coatings Technology, 2021, 421, 127388.                                                                                            | 2.2 | 22        |
| 117 | Barrier and adhesion properties of anti-corrosion coatings based on surfactant-free latexes from anhydride-containing polymers. Progress in Organic Coatings, 2009, 65, 94-103.                                                                       | 1.9 | 21        |
| 118 | Modified hydrotalcites for improved corrosion protection of reinforcing steel in concrete –<br>preparation, characterization, and assessment in alkaline chloride solution. Materials and Corrosion<br>- Werkstoffe Und Korrosion, 2016, 67, 721-738. | 0.8 | 21        |
| 119 | The Effect of Environmental Conditions on the Degradation Behavior of Biomass Pellets. Polymers, 2020, 12, 970.                                                                                                                                       | 2.0 | 21        |
| 120 | Multifunctional ZrB2-rich Zr1-xCrxBy thin films with enhanced mechanical, oxidation, and corrosion properties. Vacuum, 2021, 185, 109990.                                                                                                             | 1.6 | 21        |
| 121 | Adhesion at Al-hydroxide-polymer interfaces: Influence of chemistry and evidence for microscopic self-pinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5637-5647.              | 2.6 | 20        |
| 122 | Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet.<br>Electrochimica Acta, 2012, 77, 285-293.                                                                                                              | 2.6 | 20        |
| 123 | Bonding Mechanisms at Buried Interfaces between Carboxylic Polymers and Treated Zinc Surfaces.<br>Journal of Physical Chemistry C, 2013, 117, 2780-2792.                                                                                              | 1.5 | 20        |
| 124 | A combined electron probe micro analysis and scanning Kelvin probe force microscopy study of a modified AA4xxx/AA3xxx aluminium brazing sheet. Electrochimica Acta, 2013, 104, 48-63.                                                                 | 2.6 | 20        |
| 125 | Simulated and measured response of oxygen SECM-measurements in presence of a corrosion process.<br>Electrochimica Acta, 2014, 146, 556-563.                                                                                                           | 2.6 | 20        |
| 126 | An in situ spectro-electrochemical monitoring of aqueous effects on polymer/metal oxide interfaces.<br>Journal of Electroanalytical Chemistry, 2019, 848, 113311.                                                                                     | 1.9 | 20        |

| #   | Article                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous<br>iron-manganese scaffolds. Acta Biomaterialia, 2021, 134, 774-790.                                                                                                                                                            | 4.1 | 20        |
| 128 | Influence of uniaxial deformation on the corrosion performance of pre-coated packaging steel.<br>Progress in Organic Coatings, 2007, 60, 335-342.                                                                                                                                                                       | 1.9 | 19        |
| 129 | Oxygen consumption upon electrochemically polarised zinc. Journal of Applied Electrochemistry, 2014, 44, 747-757.                                                                                                                                                                                                       | 1.5 | 19        |
| 130 | Self-Organized Anodic Oxides on Titanium Alloys Prepared from Glycol- and Glycerol-Based Electrolytes. Materials, 2020, 13, 4743.                                                                                                                                                                                       | 1.3 | 19        |
| 131 | Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration. Acta Biomaterialia, 2022, 148, 355-373.                                                                                                                                                                  | 4.1 | 19        |
| 132 | The effect of riboflavin on the microbiologically influenced corrosion of pure iron by Shewanella oneidensis MR-1. Bioelectrochemistry, 2022, 147, 108173.                                                                                                                                                              | 2.4 | 19        |
| 133 | Validation of a fast scanning technique for corrosion inhibitor selection: influence of<br>crossâ€contamination on AA2024â€∓3. Surface and Interface Analysis, 2010, 42, 205-210.                                                                                                                                       | 0.8 | 18        |
| 134 | Electrochemical analysis of the adsorption and desorption behaviors of carboxylic acid and anhydride monomers onto zinc surfaces. Electrochimica Acta, 2011, 56, 9317-9323.                                                                                                                                             | 2.6 | 18        |
| 135 | Studying Chemisorption at Metal–Polymer Interfaces by Complementary Use of Attenuated Total<br>Reflection–Fourier Transform Infrared Spectroscopy (ATR-FTIR) in the Kretschmann Geometry and<br>Visible–Infrared Sum-Frequency Generation Spectroscopy (SFG). Journal of Physical Chemistry C, 2020,<br>124. 7127-7138. | 1.5 | 18        |
| 136 | On the importance of time-resolved electrochemical evaluation in corrosion inhibitor-screening studies. Npj Materials Degradation, 2020, 4, .                                                                                                                                                                           | 2.6 | 18        |
| 137 | Study Of Mercaptobenzimidazoles As Inhibitors For Copper Corrosion: Down to the Molecular Scale.<br>Journal of the Electrochemical Society, 2021, 168, 051504.                                                                                                                                                          | 1.3 | 18        |
| 138 | A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy<br>coatings. Surface and Coatings Technology, 2008, 202, 2755-2764.                                                                                                                                                            | 2.2 | 17        |
| 139 | Influence of material related parameters in Sea Water Acidified Accelerated Test, reliability analysis<br>and electrochemical evaluation of the test for aluminum brazing sheet. Corrosion Science, 2011, 53,<br>3923-3933.                                                                                             | 3.0 | 16        |
| 140 | Potentiodynamic anodizing of aluminum alloys in Cr(VI)â€free electrolytes. Surface and Interface<br>Analysis, 2016, 48, 946-952.                                                                                                                                                                                        | 0.8 | 16        |
| 141 | Morphology and photoluminescence of nanostructured oxides grown by copper passivation in aqueous potassium hydroxide solution. Materials Letters, 2017, 198, 89-92.                                                                                                                                                     | 1.3 | 16        |
| 142 | Effect of zirconium-based conversion treatments of zinc, aluminium and magnesium on the chemisorption of ester-functionalized molecules. Applied Surface Science, 2020, 508, 145199.                                                                                                                                    | 3.1 | 16        |
| 143 | Microstructural degradation during the storage of biomass pellets. Communications Materials, 2021, 2, .                                                                                                                                                                                                                 | 2.9 | 16        |
| 144 | Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF <sub>2</sub> and<br>MgF <sub>2</sub> –CaP coatings. Biomaterials Science, 2021, 9, 7159-7182.                                                                                                                                                   | 2.6 | 16        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Editors' Choice—Dealloying-Driven Cerium Precipitation on Intermetallic Particles in Aerospace<br>Aluminium Alloys. Journal of the Electrochemical Society, 2021, 168, 041505.              | 1.3 | 16        |
| 146 | Li leaching from Lithium Carbonate-primer: An emerging perspective of transport pathway development. Progress in Organic Coatings, 2019, 134, 103-118.                                      | 1.9 | 15        |
| 147 | Cross-sectional characterization of the conversion layer formed on AA2024-T3 by a lithium-leaching coating. Applied Surface Science, 2020, 512, 145665.                                     | 3.1 | 15        |
| 148 | Early stages during localized corrosion of AA2024 TEM specimens in chloride environment. Surface and Interface Analysis, 2013, 45, 1619-1625.                                               | 0.8 | 14        |
| 149 | The role of acidâ€base properties in the interactions across the oxideâ€primer interface in aerospace applications. Surface and Interface Analysis, 2016, 48, 712-720.                      | 0.8 | 14        |
| 150 | Aerospace Coatings. Springer Series in Materials Science, 2016, , 315-372.                                                                                                                  | 0.4 | 14        |
| 151 | Particle Characterisation and Depletion of Li2CO3 Inhibitor in a Polyurethane Coating. Coatings, 2017, 7, 106.                                                                              | 1.2 | 14        |
| 152 | Nanorods grown by copper anodizing in sodium carbonate. Journal of Electroanalytical Chemistry, 2020, 857, 113628.                                                                          | 1.9 | 14        |
| 153 | Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution. Journal of Materials Science and Technology, 2021, 64, 57-65.             | 5.6 | 14        |
| 154 | Experimental insights into anodic oxidation of hexafluoropropylene oxide dimer acid (GenX) on boron-doped diamond anodes. Chemosphere, 2022, 288, 132417.                                   | 4.2 | 14        |
| 155 | Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds. Journal of Magnesium and Alloys, 2022, 10, 2491-2509.                                                                      | 5.5 | 14        |
| 156 | Comparative study of protection of AA 2024-T3 exposed to rare earth salts solutions. Corrosion<br>Engineering Science and Technology, 2014, 49, 674-687.                                    | 0.7 | 13        |
| 157 | Corrosion reduces wet abrasive wear of structural steel. Scripta Materialia, 2015, 107, 92-95.                                                                                              | 2.6 | 13        |
| 158 | Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide<br>Chemistry and Adhesives. Corrosion, 2017, 73, 903-914.                                           | 0.5 | 13        |
| 159 | A Complementary Electrochemical Approach for Time-Resolved Evaluation of Corrosion Inhibitor<br>Performance. Journal of the Electrochemical Society, 2019, 166, C3220-C3232.                | 1.3 | 13        |
| 160 | Hydrogen sorption and desorption related properties of Pd-alloys determined by cyclic voltammetry.<br>Journal of Electroanalytical Chemistry, 2014, 734, 53-60.                             | 1.9 | 12        |
| 161 | The effect of conversion bath convection on the formation of Zrâ€based thinâ€film coatings on multiâ€metal surfaces. Materials and Corrosion - Werkstoffe Und Korrosion, 2016, 67, 361-367. | 0.8 | 12        |
| 162 | Laterally-resolved formation mechanism of a lithium-based conversion layer at the matrix and intermetallic particles in aerospace aluminium alloys. Corrosion Science, 2021, 190, 109651.   | 3.0 | 12        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Nanoscopic and in-situ cross-sectional observations of Li-based conversion coating formation using liquid-phase TEM. Npj Materials Degradation, 2021, 5, .                                                                              | 2.6 | 11        |
| 164 | Filiform corrosion imaged beneath protection layers on Al alloys. Nuclear Instruments & Methods in Physics Research B, 2002, 190, 365-369.                                                                                              | 0.6 | 10        |
| 165 | A combined TEM and SKPFM investigation of the surface layers on rolled AA5050 aluminium alloy using ultraâ€microtomy. Surface and Interface Analysis, 2008, 40, 1157-1163.                                                              | 0.8 | 10        |
| 166 | Particle induced gamma and X-ray emission spectroscopies of lithium based alloy coatings. Nuclear<br>Instruments & Methods in Physics Research B, 2017, 404, 167-172.                                                                   | 0.6 | 10        |
| 167 | Improved corrosion protection of titanium implant material by crystallographic texturing of Sr<br>doped calcium phosphate electrodeposits. Thin Solid Films, 2019, 675, 115-121.                                                        | 0.8 | 10        |
| 168 | The effect of mechanical surface patterning on filiform growth characteristics. Journal of Materials Science, 2002, 37, 2755-2761.                                                                                                      | 1.7 | 9         |
| 169 | Effects of Surface Treatment and Carboxylic Acid and Anhydride Molecular Dipole Moments on the Volta Potential Values of Zinc Surfaces. Journal of Physical Chemistry C, 2013, 117, 1712-1721.                                          | 1.5 | 9         |
| 170 | Studying interfacial bonding at buried polymer–zinc interfaces. Progress in Organic Coatings, 2015,<br>89, 323-331.                                                                                                                     | 1.9 | 9         |
| 171 | Improved Corrosion Resistance of Aluminum Brazing Sheet by a Post-Brazing Heat Treatment.<br>Corrosion, 2017, 73, 379-393.                                                                                                              | 0.5 | 9         |
| 172 | The influence of preâ€ŧreatments of aluminium alloys on bonding of PET coatings. Surface and Interface<br>Analysis, 2010, 42, 316-320.                                                                                                  | 0.8 | 8         |
| 173 | Influence of the surface activation and local pitting susceptibility on the AC-electrograining of aluminium alloys. Corrosion Science, 2011, 53, 930-938.                                                                               | 3.0 | 8         |
| 174 | An in situ study of amine and amide molecular interaction on Fe surfaces. Applied Surface Science, 2015, 354, 242-249.                                                                                                                  | 3.1 | 8         |
| 175 | Biodegradation and mechanical behavior of an advanced bioceramic-containing Mg matrix composite<br>synthesized through in-situ solid-state oxidation. Journal of the Mechanical Behavior of Biomedical<br>Materials, 2018, 80, 209-221. | 1.5 | 8         |
| 176 | Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noise. Electrochimica Acta, 2022, 426, 140733.                                                                                 | 2.6 | 8         |
| 177 | A comparative electrochemical study of commercial and model aluminium alloy (AA5050). Materials and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 399-406.                                                                            | 0.8 | 7         |
| 178 | Novel and self-healing anticorrosion coatings using rare earth compounds. , 2014, , 233-266.                                                                                                                                            |     | 7         |
| 179 | Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron. Materials<br>Science and Engineering C, 2022, 133, 112617.                                                                                      | 3.8 | 7         |
| 180 | SVET study of the corrosion protection of electrodeposited Zn and Znâ€Coâ€Fe alloy coated steels.<br>Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 802-810.                                                             | 0.8 | 6         |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Fluoride-Induced Interfacial Adhesion Loss of Nanoporous Anodic Aluminum Oxide Templates in Aerospace Structures. ACS Applied Nano Materials, 2018, 1, 6139-6149.                                          | 2.4 | 6         |
| 182 | Wavelet Transform Modulus Maxima and Holder Exponents Combined with Transient Detection for the Differentiation of Pitting Corrosion Using Electrochemical Noise. Corrosion, 2018, 74, 1001-1010.          | 0.5 | 6         |
| 183 | In Situ Methanol Adsorption on Aluminum Oxide Monitored by a Combined ORP-EIS and ATR-FTIR Kretschmann Setup. Journal of Physical Chemistry C, 2018, 122, 21963-21973.                                     | 1.5 | 6         |
| 184 | Scrutinizing the importance of surface chemistry versus surface roughness for aluminium / sol-gel film adhesion. Surfaces and Interfaces, 2021, 26, 101417.                                                | 1.5 | 6         |
| 185 | Challenges to electrochemical evaluation of nanometric sandwiched thin specimens using liquid cells designed for application in liquid-phase TEM corrosion studies. Corrosion Science, 2021, 192, 109864.  | 3.0 | 6         |
| 186 | Galvanic compatibility of corrosion protective coatings with AA7075 aluminum alloy. Materials and<br>Corrosion - Werkstoffe Und Korrosion, 2008, 59, 306-310.                                              | 0.8 | 5         |
| 187 | Interactions at polymer/(oxyhydr)oxide/aluminium interfaces studied by Scanning Kelvin Probe.<br>Surface and Interface Analysis, 2012, 44, 1059-1062.                                                      | 0.8 | 5         |
| 188 | Effect of organic additives in fluoacid-based Ti and Zr-treatments for galvanized steel on the stability of a polymer coated interface. Progress in Organic Coatings, 2020, 146, 105738.                   | 1.9 | 5         |
| 189 | The Influence of Chemical Pre-treatment and Magnesium Surface Enrichment on Bonding of Succinic<br>Acid Molecules to Aluminium Alloy. Journal of Adhesion Science and Technology, 2008, 22, 1089-1104.     | 1.4 | 4         |
| 190 | Electrochemical and Microstructural Studies in Reinforced Mortar, Modified with Core-Shell<br>Micelles. ECS Transactions, 2010, 25, 79-85.                                                                 | 0.3 | 4         |
| 191 | Corrosion Performance of Composite Galvanic Coatings with Variable Concentration of Polymeric Nanoaggregates and/or Cr(III) Conversion Layers. ECS Transactions, 2010, 33, 85-92.                          | 0.3 | 4         |
| 192 | A new approach to study local corrosion processes on steel surfaces by combining different microscopic techniques. Applied Surface Science, 2012, 258, 8790-8796.                                          | 3.1 | 4         |
| 193 | Biodegradation of ballast tank coating investigated by impedance spectroscopy and microscopy.<br>Biodegradation, 2014, 25, 67-83.                                                                          | 1.5 | 4         |
| 194 | Effect of simulated brazing on the microstructure and corrosion behavior of twin roll cast AA3003.<br>Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 60-69.                                 | 0.8 | 4         |
| 195 | Zinc Composite Layers, Incorporating Polymeric Nano-aggregates: Surface Analysis and Electrochemical Behavior ECS Transactions, 2008, 11, 27-35.                                                           | 0.3 | 3         |
| 196 | Novel electrochemical approach to study corrosion mechanism of Al–Au wire–bond pad<br>interconnections. Corrosion Engineering Science and Technology, 2013, 48, 409-417.                                   | 0.7 | 3         |
| 197 | Li leaching from Li carbonate-primer: Transport pathway development from the scribe edge of a primer/topcoat system. Progress in Organic Coatings, 2021, 158, 106284.                                      | 1.9 | 3         |
| 198 | Microstructure, mechanical, and corrosion properties of Zr1-xCrxBy diboride alloy thin films grown<br>by hybrid high power impulse/DC magnetron co-sputtering. Applied Surface Science, 2022, 591, 153164. | 3.1 | 3         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | The cost and availability of rare earth-based corrosion inhibitors. , 2014, , 291-305.                                                                                                             |     | 2         |
| 200 | Advanced (In Situ) Surface Analysis of Organic Coating/Metal Oxide Interactions for Corrosion Protection of Passivated Metals. , 2018, , 1-17.                                                     |     | 2         |
| 201 | Exploring water and ion transport process at silicone/copper interfaces using in-situ electrochemical and Kelvin probe approaches. Journal of Materials Science and Technology, 2021, 64, 203-213. | 5.6 | 2         |
| 202 | pH-Responsive Nanostructured Polyaniline Capsules for Self-Healing Corrosion Protection: The<br>Influence of Capsule Concentration. Scientia Iranica, 2017, .                                      | 0.3 | 2         |
| 203 | Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper. Corrosion Science and Technology, 2017, 16, 1-7.                  | 0.2 | 2         |
| 204 | A Preliminary Study on Cathodic Prevention in Reinforced Mortar. ECS Transactions, 2009, 25, 93-100.                                                                                               | 0.3 | 1         |
| 205 | New approach in microstructural analysis of a modified AA4XXX/AA3XXX brazing sheet before and after brazing. , 2011, , 69-79.                                                                      |     | 1         |
| 206 | Smart corrosion protection by multi-action self-healing polymeric coatings. , 2016, , 157-181.                                                                                                     |     | 1         |
| 207 | Electrochemical Techniques for the Study of Self Healing Coatings. Springer Series in Materials Science, 2016, , 203-240.                                                                          | 0.4 | 1         |
| 208 | (Invited) In-Situ Liquid Phase TEM Studies of Corrosion Initiation in Aluminium Alloys. ECS Meeting<br>Abstracts, 2020, MA2020-02, 1292-1292.                                                      | 0.0 | 1         |
| 209 | Localized Corrosion of Chromium Coated Steel. ECS Transactions, 2006, 3, 631-638.                                                                                                                  | 0.3 | Ο         |
| 210 | Organic coatings for marine and shipping applications. , 2008, , 337-371.                                                                                                                          |     | 0         |
| 211 | 18 <sup>th</sup> International Corrosion Congress. Corrosion Engineering Science and Technology, 2012, 47, 161-163.                                                                                | 0.7 | Ο         |
| 212 | Enhanced corrosion protection by microstructural control of aluminium brazing sheet. , 2013, ,<br>91-102.                                                                                          |     | 0         |
| 213 | Monitoring carbon steel behavior under biotic and abiotic conditions. Materials Research Society<br>Symposia Proceedings, 2015, 1768, 15.                                                          | 0.1 | 0         |
| 214 | A Study of the Effect of Ligand-Metal Interactions on the Electrodeposition of Chromium from Trivalent Chromium Electrolytes. ECS Meeting Abstracts, 2021, MA2021-01, 941-941.                     | 0.0 | 0         |
| 215 | Mechanisms of Li Leaching from a LiCO3 Based Primer / Topcoat Paint System. Microscopy and Microanalysis, 2021, 27, 3054-3056.                                                                     | 0.2 | 0         |
| 216 | The Role of Lithium Salt Concentration in the Active Corrosion Protection of Aluminium Alloys. ECS<br>Meeting Abstracts, 2019, , .                                                                 | 0.0 | 0         |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Effect of Ligand-Complex Interactions on the Electrodeposition of Mixed Chromium<br>Metal-Carbide-Oxides from Trivalent Chromium Electrolytes. ECS Meeting Abstracts, 2020, MA2020-01,<br>1161-1161.        | 0.0 | Ο         |
| 218 | The Effect of Pre-Treatment on Corrosion Properties, Surface Chemistry and Interfacial Properties of<br>Sol-Gel Coating on Aluminium and Aluminium Alloys. ECS Meeting Abstracts, 2020, MA2020-01, 994-994. | 0.0 | 0         |
| 219 | (Digital Presentation) Initial High-Temperature Oxidation Behavior of Iron Binary Alloys in Air. ECS<br>Meeting Abstracts, 2022, MA2022-01, 996-996.                                                        | 0.0 | Ο         |