Hongjian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8047358/publications.pdf Version: 2024-02-01

ΗΟΝΟΙΙΑΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Investigation of mechanical properties for 2.5D woven composites with different weft-layer-numbers by a triple-cell model system. Journal of Industrial Textiles, 2022, 51, 5243S-5285S.	2.4	6
2	In-situ SEM and EBSD study on fretting fatigue crack initiation of a directionally solidified Ni-based superalloy. International Journal of Fatigue, 2022, 161, 106908.	5.7	8
3	Tensile and flexural failure behaviors of bolted T-joint consisting of T300/BMP316 composite laminates and TC4 alloy. Composite Structures, 2022, 297, 115943.	5.8	2
4	Mechanical Properties Prediction of 2.5D Woven Composites via Voxel-mesh Full-cell Model. Fibers and Polymers, 2021, 22, 1899-1914.	2.1	4
5	Influence of notch shape on the quasi-static tensile behavior of 2.5D woven composite structure. Thin-Walled Structures, 2021, 165, 107944.	5.3	6
6	Warp-loaded mechanical performance of 3D orthogonal layer-to-layer woven composite perforated structures with different apertures. Composite Structures, 2021, 278, 114720.	5.8	5
7	A physical-based constitutive model considering the motion of dislocation for Ni3Al-base superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138631.	5.6	10
8	Representative cell modeling strategy of 2.5D woven composites considering the randomness of weft cross-section for mechanical properties prediction. Engineering Fracture Mechanics, 2020, 237, 107255.	4.3	12
9	A user-friendly yield criterion for metals exhibiting tension-compression asymmetry. Chinese Journal of Aeronautics, 2020, 33, 2602-2609.	5.3	3
10	Effect of Laser Shock Peening on Fretting Fatigue Life of TC11 Titanium Alloy. Materials, 2020, 13, 4711.	2.9	8
11	Mechanical Behaviors on T-shaped Hook-connected Structure Made of 2.5D Woven Composites and TC4 Alloy. Fibers and Polymers, 2020, 21, 407-415.	2.1	3
12	Study on low-velocity impact and residual strength at high temperatures of composite laminates. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 1106-1123.	1.3	4
13	Crystal orientation effect on fretting fatigue induced geometrically necessary dislocation distribution in Ni-based single-crystal superalloys. Acta Materialia, 2019, 179, 129-141.	7.9	57
14	Subsurface crack formation and propagation of fretting fatigue in Niâ€based singleâ€crystal superalloys. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2520-2532.	3.4	10
15	Investigation on the bending and tensile performances of the T-shaped hook-connected structure made of laminated composites and TC4 alloy. Polymer Testing, 2019, 80, 106083.	4.8	8
16	Study on the Effect of Laser Quenching on Fretting Fatigue Life. Metals, 2019, 9, 566.	2.3	3
17	Experimental Study on the Reliability of PBGA Electronic Packaging under Shock Loading. Electronics (Switzerland), 2019, 8, 279.	3.1	11
18	A united tension/compression asymmetry micro-mechanical model for nickel-base single-crystal alloys. Journal of Iron and Steel Research International, 2019, 26, 621-630.	2.8	3

Hongjian Zhang

#	Article	IF	CITATIONS
19	Study on bending and tensile properties of a T-shaped hook-connected structure made of two-and-a-half-dimensional woven composites and laminated composites. Textile Reseach Journal, 2019, 89, 4046-4059.	2.2	6
20	Experiments and simulations on the strength of open-hole composite laminates at different temperatures. Mechanics of Advanced Materials and Structures, 2019, 26, 1997-2008.	2.6	6
21	A Full-Process Numerical Analyzing Method of Low-Velocity Impact Damage and Residual Strength for Stitched Composites. Applied Sciences (Switzerland), 2018, 8, 2698.	2.5	2
22	Bending/tensile tests and simulations of the 2.5D woven T-shaped hooking composite structure. Composite Structures, 2018, 206, 155-163.	5.8	17
23	Multiaxial fatigue life prediction of composite materials. Chinese Journal of Aeronautics, 2017, 30, 1012-1020.	5.3	10
24	Study on a statistical unit cell model for Ni3Al-base superalloy. Mechanics of Materials, 2016, 98, 1-10.	3.2	3
25	Finite Element Analysis of 2.5D Woven Composites, Part II: Damage Behavior Simulation and Strength Prediction. Applied Composite Materials, 2016, 23, 45-69.	2.5	22
26	Finite Element Analysis of 2.5D Woven Composites, Part I: Microstructure and 3D Finite Element Model. Applied Composite Materials, 2016, 23, 29-44.	2.5	26
27	Yield anisotropy and tension/compression asymmetry of a Ni3Al based intermetallic alloy. Chinese Journal of Aeronautics, 2013, 26, 801-806.	5.3	7
28	Study on the Stiffness of Comeld Composites Joints. Ceramic Engineering and Science Proceedings, 2012, , 261-271.	0.1	1
29	Study on the strength prediction model of Comeld composites joints. Composites Part B: Engineering, 2012, 43, 3310-3317.	12.0	28
30	An experimental study on constitutive equations of alloy IC10 over a wide range of temperatures and strain rates. Materials & Design, 2012, 36, 130-135.	5.1	3
31	Recrystallization behaviors of alloy IC10 at elevated temperature: experiments and modeling. Journal of Materials Science, 2011, 46, 1076-1082.	3.7	1
32	Behaviors of IC10 alloy over a wide range of strain rates and temperatures: Experiments and modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 504, 99-103.	5.6	54
33	A modified Zerilli–Armstrong model for alloy IC10 over a wide range of temperatures and strain rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 527, 328-333.	5.6	56