Kazemnejad-Leili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8047041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochemical and molecular characterization of hepatocyteâ€like cells derived from human bone marrow mesenchymal stem cells on a novel threeâ€dimensional biocompatible nanofibrous scaffold. Journal of Gastroenterology and Hepatology (Australia), 2009, 24, 278-287.	1.4	117
2	Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application. Frontiers in Cell and Developmental Biology, 2020, 8, 497.	1.8	107
3	Effect of menstrual bloodâ€derived stromal stem cells on proliferative capacity of peripheral blood mononuclear cells in allogeneic mixed lymphocyte reaction. Journal of Obstetrics and Gynaecology Research, 2012, 38, 804-809.	0.6	61
4	Osteogenic Differentiation of Stem Cells Derived from Menstrual Blood Versus Bone Marrow in the Presence of Human Platelet Releasate. Tissue Engineering - Part A, 2012, 18, 1720-1728.	1.6	60
5	Comparative Evaluation of Differentiation Potential of Menstrual Blood- Versus Bone Marrow- Derived Stem Cells into Hepatocyte-Like Cells. PLoS ONE, 2014, 9, e86075.	1.1	49
6	Molecular and ultrastructural characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells. Cell Biology International, 2008, 32, 1183-1192.	1.4	47
7	Characterization and Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on a Nanofibrous Scaffold. International Journal of Artificial Organs, 2012, 35, 55-66.	0.7	47
8	Proliferation and chondrogenic differentiation potential of menstrual blood- and bone marrow-derived stem cells in two-dimensional culture. International Journal of Hematology, 2012, 95, 484-493.	0.7	46
9	Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E124-E134.	1.3	46
10	Fabrication and characterization of nano-fibrous bilayer composite for skin regeneration application. Methods, 2016, 99, 3-12.	1.9	34
11	Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Molecular Biology Reports, 2017, 44, 169-182.	1.0	33
12	Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Scientific Reports, 2019, 9, 10007.	1.6	33
13	Comparative Immunophenotypic Characteristics, Proliferative Features, and Osteogenic Differentiation of Stem Cells Isolated from Human Permanent and Deciduous Teeth with Bone Marrow. Molecular Biotechnology, 2016, 58, 415-427.	1.3	31
14	Comparative restoration of acute liver failure by menstrual blood stem cells compared with bone marrow stem cells in mice model. Cytotherapy, 2017, 19, 1474-1490.	0.3	31
15	Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on Nanofibrous Scaffolds. Methods in Molecular Biology, 2013, 1058, 149-169.	0.4	28
16	Differentiation potential of menstrual blood†versus bone marrowâ€stem cells into glialâ€like cells. Cell Biology International, 2014, 38, 615-624.	1.4	28
17	Mouse preantral follicle growth in 3D co-culture system using human menstrual blood mesenchymal stem cell. Reproductive Biology, 2018, 18, 122-131.	0.9	28
18	Comparative Evaluation of Cardiac Markers in Differentiated Cells from Menstrual Blood and Bone Marrow-Derived Stem Cells In Vitro, Molecular Biotechnology, 2014, 56, 1151-1162	1.3	27

Kazemnejad-Leili

#	Article	IF	CITATIONS
19	Evaluation of menstrual blood stem cells seeded in biocompatible <i>Bombyx mori</i> silk fibroin scaffold for cardiac tissue engineering. Journal of Biomaterials Applications, 2014, 29, 199-208.	1.2	26
20	Bilayer Amniotic Membrane/Nano-fibrous Fibroin Scaffold Promotes Differentiation Capability of Menstrual Blood Stem Cells into Keratinocyte-Like Cells. Molecular Biotechnology, 2018, 60, 100-110.	1.3	22
21	Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model. Cell and Tissue Research, 2016, 364, 559-572.	1.5	21
22	InÂvitro differentiation of menstrual blood stem cells into keratinocytes: A potential approach for management of wound healing. Biologicals, 2017, 48, 66-73.	0.5	21
23	Efficient Wound Healing Using a Synthetic Nanofibrous Bilayer Skin Substitute in Murine Model. Journal of Surgical Research, 2020, 245, 31-44.	0.8	20
24	Comparative evaluation of <i>inÂvivo</i> biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers. Journal of Biomaterials Applications, 2016, 30, 793-809.	1.2	19
25	Differential effects of acetaminophen on enzymatic and non-enzymatic antioxidant factors and plasma total antioxidant capacity in developing and adult rats. Molecular and Cellular Biochemistry, 2006, 281, 145-152.	1.4	16
26	Safety evaluation of stem cells used for clinical cell therapy in chronic liver diseases; with emphasize on biochemical markers. Clinical Biochemistry, 2012, 45, 385-396.	0.8	15
27	Differential expression of glutathione S-transferases P1-1 and A1-1 at protein and mRNA levels in hepatocytes derived from human bone marrow mesenchymal stem cells. Toxicology in Vitro, 2009, 23, 674-679.	1.1	14
28	Comparative Effect of Human Platelet Derivatives on Proliferation and Osteogenic Differentiation of Menstrual Blood-Derived Stem Cells. Molecular Biotechnology, 2014, 56, 223-231.	1.3	14
29	Tissue Engineering andÂRegenerative Medicine in Iran: Current State of Research and Future Outlook. Molecular Biotechnology, 2015, 57, 589-605.	1.3	12
30	Extended Culture of Encapsulated Human Blastocysts in Alginate Hydrogel Containing Decidualized Endometrial Stromal Cells in the Presence of Melatonin. Molecular Biotechnology, 2016, 58, 684-694.	1.3	11
31	Current evidence on immunological and regenerative effects of menstrual blood stem cells seeded on scaffold consisting of amniotic membrane and silk fibroin in chronic wound. International Immunopharmacology, 2020, 85, 106595.	1.7	11
32	Down-regulation of miR-122 after transplantation of mesenchymal stem cells in acute liver failure in mice model. Biologicals, 2019, 58, 64-72.	0.5	10
33	Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells. PLoS ONE, 2016, 11, e0153684.	1.1	10
34	The remarkable effect of menstrual blood stem cells seeded on bilayer scaffold composed of amniotic membrane and silk fibroin aiming to promote wound healing in diabetic mice. International Immunopharmacology, 2022, 102, 108404.	1.7	8
35	Comparative effectiveness of three-dimensional scaffold, differentiation media and co-culture with native cardiomyocytes to trigger in vitro cardiogenic differentiation of menstrual blood and bone marrow stem cells. Biologicals, 2018, 54, 13-21.	0.5	6
36	Gene expression pattern of some classes of cytochrome P-450 and glutathione S-transferase enzymes in differentiated hepatocytes-like cells from menstrual blood stem cells. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 530-538.	0.7	5

#	Article	IF	CITATIONS
37	Evaluation of Bioactivity and Biocompatibility of Silk Fibroin/TiO2 Nanocomposite. Journal of Medical and Biological Engineering, 2018, 38, 99-105.	1.0	5