List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8046556/publications.pdf Version: 2024-02-01

ΡηπιρΙΗνόδις

#	Article	IF	CITATIONS
1	Heteromannans are the predominant hemicelluloses in the gametophytic stem of the umbrella moss Hypnodendron menziesii and occur in the walls of all cell types. Planta, 2021, 254, 2.	1.6	5
2	Mapping Pectic-Polysaccharide Epitopes in Cell Walls of Forage Chicory (Cichorium intybus) Leaves. Frontiers in Plant Science, 2021, 12, 762121.	1.7	6
3	Using Solid-State 13C NMR Spectroscopy to Study the Molecular Organization of Primary Plant Cell Walls. Methods in Molecular Biology, 2020, 2149, 203-223.	0.4	1
4	Predicting the cell-wall compositions of solid Pinus radiata (radiata pine) wood using NIR and ATR FTIR spectroscopies. Cellulose, 2019, 26, 7695-7716.	2.4	11
5	Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.). Planta, 2019, 250, 1819-1832.	1.6	8
6	Occurrence of fucosylated and non-fucosylated xyloglucans in the cell walls of monocotyledons: An immunofluorescence study. Plant Physiology and Biochemistry, 2019, 139, 428-434.	2.8	11
7	Xylans of Red and Green Algae: What Is Known about Their Structures and How They Are Synthesised?. Polymers, 2019, 11, 354.	2.0	46
8	Developmental changes in collenchyma cell-wall polysaccharides in celery (Apium graveolens L.) petioles. BMC Plant Biology, 2019, 19, 81.	1.6	10
9	Using near infrared spectroscopy to predict the lignin content and monosaccharide compositions of Pinus radiata wood cell walls. International Journal of Biological Macromolecules, 2018, 113, 507-514.	3.6	17
10	Editorial for the Special Issue "Dietary Fibre: New Insights on Biochemistry and Health Benefits― International Journal of Molecular Sciences, 2018, 19, 3556.	1.8	3
11	Dimensional Changes of Tracheids during Drying of Radiata Pine (Pinus radiata D. Don) Compression Woods: A Study Using Variable-Pressure Scanning Electron Microscopy (VP-SEM). Plants, 2018, 7, 14.	1.6	5
12	Commelinid Monocotyledon Lignins Are Acylated by <i>p</i> -Coumarate. Plant Physiology, 2018, 177, 513-521.	2.3	51
13	Location and characterization of lignin in tracheid cell walls of radiata pine (Pinus radiata D. Don) compression woods. Plant Physiology and Biochemistry, 2017, 118, 187-198.	2.8	15
14	Predicting the cell-wall compositions of Pinus radiata (radiata pine) wood using ATR and transmission FTIR spectroscopies. Cellulose, 2017, 24, 5275-5293.	2.4	33
15	Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm <i>Phoenix canariensis</i> . Plant Physiology, 2017, 175, 1058-1067.	2.3	34
16	Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles. BMC Plant Biology, 2017, 17, 104.	1.6	25
17	Potential Benefits of Dietary Fibre Intervention in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2016, 17, 919.	1.8	83

 $\begin{array}{l} \mbox{Tracheid cell-wall structures and locations of $(1a\in i^2+1)^2-d-galactans and $($

#	Article	IF	CITATIONS
19	Tricinâ€lignins: occurrence and quantitation of tricin in relation to phylogeny. Plant Journal, 2016, 88, 1046-1057.	2.8	118
20	Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2016, 2, e1600393.	4.7	147
21	In Silico Comparison of the Hemicelluloses Xyloglucan and Glucuronoarabinoxylan in Protecting Cellulose from Degradation. Computation, 2015, 3, 336-353.	1.0	0
22	Quantification of (1→4)-β-d-Galactans in Compression Wood Using an Immuno-Dot Assay. Plants, 2015, 4, 29-43.	1.6	7
23	Naturally p-Hydroxybenzoylated Lignins in Palms. Bioenergy Research, 2015, 8, 934-952.	2.2	99
24	Wood quality assessment of Pinus radiata (radiata pine) saplings by dynamic mechanical analysis. Wood Science and Technology, 2015, 49, 1239-1250.	1.4	15
25	A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation. Computation, 2014, 2, 23-46.	1.0	6
26	Using NIR and ATR-FTIR spectroscopy to rapidly detect compression wood in <i>Pinus radiata</i> . Canadian Journal of Forest Research, 2014, 44, 820-830.	0.8	25
27	Wheat and Rice Dietary Fiber in Colorectal Cancer Prevention and the Maintenance of Health. , 2014, , 201-210.		2
28	Pyrolysis gas-chromatography mass-spectrometry (Py-GC/MS) to identify compression wood in <i>Pinus radiata</i> saplings. Holzforschung, 2014, 68, 505-517.	0.9	10
29	Family 34 glycosyltransferase (<scp>GT</scp> 34) genes and proteins in <i>Pinus radiata</i> (radiata) Tj ETQq1	1 0,78431 2.8	4 rgBT /Ove
30	Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls. Plant Physiology, 2013, 163, 1558-1567.	2.3	197
31	Inhibition or Enhancement by 4 Pacific Island Food Plants Against Cancers Induced by 2 Amino–3-Methylimidazo[4,5-f]Quinoline in Male Fischer 344 Rats. Nutrition and Cancer, 2012, 64, 218-227.	0.9	1
32	Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata. Cellulose, 2012, 19, 1385-1404.	2.4	40
33	Structures of xyloglucans in primary cell walls of gymnosperms, monilophytes (ferns sensu lato) and lycophytes. Phytochemistry, 2012, 79, 87-101.	1.4	40
34	Using Solid-State 13C NMR Spectroscopy to Study the Molecular Organisation of Primary Plant Cell Walls. Methods in Molecular Biology, 2011, 715, 179-196.	0.4	7
35	Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture. Journal of Applied Microbiology, 2011, 111, 1086-1096.	1.4	28
36	Comparative effects in rats of intact wheat bran and two wheat bran fractions on the disposition of the mutagen 2-amino-3-methylimidazo[4,5-f]quinoline. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 716, 59-65.	0.4	5

PHILIP J HARRIS

#	Article	IF	CITATIONS
37	Distribution of Fucosylated Xyloglucans among the Walls of Different Cell Types in Monocotyledons Determined by Immunofluorescence Microscopy. Molecular Plant, 2011, 4, 144-156.	3.9	32
38	The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochemistry Reviews, 2010, 9, 19-33.	3.1	122
39	Distribution of (1->4)-Â-galactans, arabinogalactan proteins, xylans and (1->3)-Â-glucans in tracheid cell walls of softwoods. Tree Physiology, 2010, 30, 782-793.	1.4	42
40	Evolutionary Aspects of $(1,3)$ - \hat{l}^2 -Glucans and Related Polysaccharides. , 2009, , 655-662.		0
41	Xyloglucans of Monocotyledons Have Diverse Structures. Molecular Plant, 2009, 2, 943-965.	3.9	117
42	Solid-State ¹³ C NMR Study of a Composite of Tobacco Xyloglucan and <i>Gluconacetobacter xylinus</i> Cellulose: Molecular Interactions between the Component Polysaccharides. Biomacromolecules, 2009, 10, 2961-2967.	2.6	28
43	Distribution, Fine Structure and Function of (1,3;1,4)-β-Glucans in the Grasses and Other Taxa. , 2009, , 621-654.		17
44	Anthocyanidin-containing compounds occur in the periderm cell walls of the storage roots of sweet potato (Ipomoea batatas). Journal of Plant Physiology, 2009, 166, 1112-1117.	1.6	15
45	Cell-wall Polysaccharides of Potatoes. , 2009, , 63-81.		11
46	WAXS and 13C NMR study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglucan. Carbohydrate Research, 2008, 343, 221-229.	1.1	35
47	<i>In vitro</i> degradation of forage chicory (<i>Cichorium intybus</i> L.) by endopoly― galacturonase. Journal of the Science of Food and Agriculture, 2007, 87, 2860-2867.	1.7	2
48	Polysaccharide compositions of leaf cell walls of forage chicory (Cichorium intybus L.). Plant Science, 2006, 170, 18-27.	1.7	10
49	Plant cell walls and cell-wall polysaccharides: structures, properties and uses in food products. International Journal of Food Science and Technology, 2006, 41, 129-143.	1.3	134
50	Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Molecular Nutrition and Food Research, 2005, 49, 585-593.	1.5	197
51	Production and characterisation of two wheat-bran fractions: an aleurone-rich and a pericarp-rich fraction. Molecular Nutrition and Food Research, 2005, 49, 536-545.	1.5	57
52	The cellulose synthase gene PrCESA10 is involved in cellulose biosynthesis in developing tracheids of the gymnosperm Pinus radiata. Gene, 2005, 350, 107-116.	1.0	8
53	(1→3),(1→4)â€ÃŸâ€dâ€Glucans in the cell walls of the Poales (sensu lato): an immunogold labeling study usi monoclonal antibody. American Journal of Botany, 2005, 92, 1660-1674.	^{ng a} 0.8	89
54	Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall. Journal of Experimental Botany, 2004, 55, 571-583.	2.4	103

#	Article	IF	CITATIONS
55	Bands of root hairs are produced in tomato <i>(Lycopersicon esculentum)</i> in response to specific combinations of thermoperiods and photoperiods. New Zealand Journal of Crop and Horticultural Science, 2004, 32, 121-129.	0.7	4
56	Atomic force microscopy of microfibrils in primary cell walls. Planta, 2003, 217, 283-289.	1.6	72
57	The root epidermis of Echium plantagineum L.: a novel type of pattern based on the distribution of short and long root hairs. Planta, 2003, 217, 238-244.	1.6	6
58	Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don. Planta, 2003, 217, 736-747.	1.6	50
59	Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 542, 49-58.	0.9	75
60	The dietary fibre debate: more food for thought. Lancet, The, 2003, 361, 1487-1488.	6.3	68
61	Location of (1Â→Â3)―and (1Â→Â3),(1Â→Â4)â€Î²â€Dâ€glucans in vegetative cell walls of barley (Hordeum v immunogold labelling. New Phytologist, 2002, 154, 347-358.	vulgare) us	sing 46
62	Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsisthaliana: a solid-state CP/MAS 13C NMR study. Carbohydrate Research, 2002, 337, 587-593.	1.1	30
63	Changing Concepts of Dietary Fiber: Implications for Carcinogenesis. Nutrition and Cancer, 2001, 39, 155-169.	0.9	74
64	Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls. Phytochemistry, 2001, 56, 513-519.	1.4	76
65	Cell wall compositions of raw and cooked corms of taro (Colocasia esculenta). Journal of the Science of Food and Agriculture, 2001, 81, 311-318.	1.7	32
66	Adsorption of Carcinogens by Dietary Fiber. , 2001, , 207-218.		4
67	Dietary Fibre and Resistant Starch â \in " Do They Protect against Cancer?. , 2000, , 18-21.		0
68	Effects of two contrasting dietary fibres on starch digestion, short-chain fatty acid production and transit time in rats. Journal of the Science of Food and Agriculture, 2000, 80, 2089-2095.	1.7	18
69	Polysaccharide compositions of primary cell walls of the palms Phoenix canariensis and Rhopalostylis sapida. Plant Physiology and Biochemistry, 2000, 38, 699-708.	2.8	41
70	Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochemical Systematics and Ecology, 2000, 28, 865-879.	0.6	64
71	The study of antigenotoxic effects of dietary fibre is lost in a confused concept. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 447, 319-322.	0.4	3
72	Comparative Effects of Three Resistant Starch Preparations on Transit Time and Short-Chain Fatty Acid Production in Rats. Nutrition and Cancer, 2000, 36, 230-237.	0.9	114

#	Article	IF	CITATIONS
73	A New Technique to Investigate Cell Layers of the Capsule Wall Using Frullania (Hepaticae) as a Case Study. Bryologist, 1999, 102, 240.	0.1	8
74	Studies on the mechanism of cancer protection by wheat bran: effects on the absorption, metabolism and excretion of the food carcinogen 2-amino-3-methylimidazo[4,5- f]quinoline (IQ). Carcinogenesis, 1999, 20, 2253-2260.	1.3	27
75	The polysaccharide composition of Poales cell walls. Biochemical Systematics and Ecology, 1999, 27, 33-53.	0.6	143
76	Dietary fibres may protect or enhance carcinogenesis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 443, 95-110.	0.9	90
77	Suberized plant cell walls suppress formation of heterocyclic amine-induced aberrant crypts in a rat model. Chemico-Biological Interactions, 1998, 114, 191-209.	1.7	24
78	Does wheat bran or does wheat dietary fibre protect against breast cancer?. , 1998, 78, 385-386.		7
79	Membrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto. Planta, 1998, 205, 380-388.	1.6	50
80	The range of mobility of the non-cellulosic polysaccharides is similar in primary cell walls with different polysaccharide compositions. Physiologia Plantarum, 1998, 103, 233-246.	2.6	16
81	Adsorption of a hydrophobic mutagen to cereal brans and cereal bran dietary fibres. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1998, 412, 323-331.	0.9	28
82	Crystalline Cellulose in Hydrated Primary Cell Walls of Three Monocotyledons and One Dicotyledon. Plant and Cell Physiology, 1998, 39, 711-720.	1.5	48
83	Particle Size of Wheat Bran in Relation to Colonic Function in Rats. LWT - Food Science and Technology, 1997, 30, 735-742.	2.5	17
84	Monosaccharide compositions of unlignified cell walls of monocotyledons in relation to the occurrence of wall-bound ferulic acid. Biochemical Systematics and Ecology, 1997, 25, 167-179.	0.6	59
85	Molecular Distinction between Monocotyledons and Dicotyledons: more than a simple dichotomy. Plant Molecular Biology Reporter, 1997, 15, 216-218.	1.0	16
86	Studies on the role of specific dietary fibres in protection against colorectal cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 350, 173-184.	0.4	75
87	The adsorption of heterocyclic aromatic amines by model dietary fibres with contrasting compositions. Chemico-Biological Interactions, 1996, 100, 13-25.	1.7	56
88	The effects of a soluble-fibre polysaccharide on the adsorption of carcinogens to insoluble dietary fibres. Chemico-Biological Interactions, 1995, 95, 245-255.	1.7	23
89	Differences in intake of specific food plants by Polynesians may explain their lower incidence of colorectal cancer compared with Europeans in New Zealand. Nutrition and Cancer, 1995, 23, 33-42.	0.9	19
90	Dietary fibre: its composition and role in protection against colorectal cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1993, 290, 97-110.	0.4	138

#	Article	IF	CITATIONS
91	The adsorption of a range of dietary carcinogens by α-cellulose, a model insoluble dietary fiber. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1993, 319, 257-266.	1.2	34
92	The effects of solubleâ€fiber polysaccharides on the adsorption of a hydrophobic carcinogen to an insoluble dietary fiber. Nutrition and Cancer, 1993, 19, 43-54.	0.9	33
93	Adsorption of a hydrophobic mutagen to dietary fiber from taro (Colocasia esculenta),an important food plant of the south pacific. Nutrition and Cancer, 1992, 17, 85-95.	0.9	40
94	In vitro adsorption of a hydrophobic mutagen to gastrointestinal mucus glycoprotein (mucin) and dietary fibre. Chemico-Biological Interactions, 1992, 82, 219-229.	1.7	5
95	The detection and quantification of apiose by capillary gas chromatography of its alditol acetates. Carbohydrate Research, 1992, 227, 365-370.	1.1	2
96	Adsorption of a hydrophobic mutagen to dietary fibre from the skin and flesh of potato tubers. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1991, 260, 203-213.	1.2	27
97	Adsorption of a hydrophobic mutagen to five contrasting dietary fiber preparations. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 262, 195-202.	1.2	23
98	Effects of bile salts on the adsorption of a hydrophobic mutagen to dietary fiber. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1990, 245, 111-117.	1.2	8
99	Effect on in Vitro Pollen Growth of an Isolated Style Glycoprotein Associated with Self-Incompatibility in Nicotiana alata. Plant Physiology, 1989, 89, 360-367.	2.3	27
100	4,4′-Dihydroxytruxillic acid as a component of cell walls of Lolium multiflorum. Phytochemistry, 1988, 27, 349-351.	1.4	66
101	Structure and Function of Plant Cell Walls. , 1988, , 297-371.		322
102	Gas Chromatographic Determination of the Monosaccharide Composition of Plant Cell Wall Preparations. Journal of the Association of Official Analytical Chemists, 1988, 71, 272-275.	0.2	68
103	An Enzyme-Linked Immunosorbent Assay (ELISA) for in Vitro Pollen Growth Based on Binding of a Monoclonal Antibody to the Pollen Tube Surface. Plant Physiology, 1987, 84, 851-855.	2.3	19
104	Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydrate Research, 1986, 148, 71-85.	1.1	349
105	Ca2+ -dependent protein phosphorylation in germinated pollen of Nicotiana alata, an ornamental tobacco. Physiologia Plantarum, 1986, 67, 151-157.	2.6	27
106	Molecular basis of cell recognition during fertilization in higher plants. Journal of Cell Science, 1985, 1985, 261-285.	1.2	48
107	Capillary gas chromatography of partially methylated alditol acetates on a high-polarity bonded-phase vitreous-silica column. Journal of Chromatography A, 1984, 315, 373-377.	1.8	18
108	An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydrate Research, 1984, 127, 59-73.	1.1	571

#	Article	IF	CITATIONS
109	A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 1983, 113, 291-299.	1.1	1,846
110	Separation of alditol acetates from plasticizers and other contaminants by capillary gas chromatography. Journal of Chromatography A, 1983, 262, 249-256.	1.8	15
111	Evaluation of stabilised diazonium salts for the detection of phenolic constituents of plant cell walls. Journal of the Science of Food and Agriculture, 1982, 33, 516-520.	1.7	36
112	Phenolic Constituents of the cell walls of dicotyledons. Biochemical Systematics and Ecology, 1981, 9, 189-203.	0.6	158
113	Phenolic constituents of mesophyll and non-mesophyll cell walls from leaf laminae ofLolium perenne. Journal of the Science of Food and Agriculture, 1980, 31, 959-962.	1.7	59
114	Phenolic constituents of the cell walls of monocotyledons. Biochemical Systematics and Ecology, 1980, 8, 153-160.	0.6	236
115	Dietary Fibers. , 0, , 709-719.		Ο