Joshua Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8046500/publications.pdf

Version: 2024-02-01

136740 233125 5,728 49 32 45 h-index citations g-index papers 69 69 69 5133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans. Journal of Neuroscience, 2009, 29, 13613-13620.	1.7	792
2	Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 2013, 16, 1188-1190.	7.1	431
3	Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 2012, 22, 748-761.	0.9	394
4	Brain Oscillations Control Timing of Single-Neuron Activity in Humans. Journal of Neuroscience, 2007, 27, 3839-3844.	1.7	316
5	Neural Activity in Human Hippocampal Formation Reveals the Spatial Context of Retrieved Memories. Science, 2013, 342, 1111-1114.	6.0	269
6	EEG oscillations and recognition memory: Theta correlates of memory retrieval and decision making. Neurolmage, 2006, 32, 978-987.	2.1	254
7	Synchronous and Asynchronous Theta and Gamma Activity during Episodic Memory Formation. Journal of Neuroscience, 2013, 33, 292-304.	1.7	246
8	Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex. Neuron, 2018, 98, 1269-1281.e4.	3.8	238
9	Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130304.	1.8	217
10	Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory. Neuron, 2016, 92, 983-990.	3.8	181
11	A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6487-6492.	3.3	179
12	Slow-Theta-to-Gamma Phase–Amplitude Coupling in Human Hippocampus Supports the Formation of New Episodic Memories. Cerebral Cortex, 2016, 26, 268-278.	1.6	163
13	Direct brain recordings fuel advances in cognitive electrophysiology. Trends in Cognitive Sciences, 2010, 14, 162-171.	4.0	158
14	Traveling Theta Waves in the Human Hippocampus. Journal of Neuroscience, 2015, 35, 12477-12487.	1.7	145
15	Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nature Communications, 2018, 9, 2423.	5.8	132
16	Functionally distinct high and low theta oscillations in the human hippocampus. Nature Communications, 2020, 11, 2469.	5.8	126
17	Neural Representations of Individual Stimuli in Humans Revealed by Gamma-Band Electrocorticographic Activity. Journal of Neuroscience, 2009, 29, 10203-10214.	1.7	107
18	Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28463-28474.	3.3	107

#	Article	IF	CITATIONS
19	Phase-tuned neuronal firing encodes human contextual representations for navigational goals. ELife, 2018, 7, .	2.8	91
20	Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biology, 2018, 16, e2003805.	2.6	88
21	Phase precession in the human hippocampus and entorhinal cortex. Cell, 2021, 184, 3242-3255.e10.	13.5	75
22	The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stimulation, 2020, 13, 1183-1195.	0.7	73
23	PyEPL: A cross-platform experiment-programming library. Behavior Research Methods, 2007, 39, 950-958.	2.3	66
24	Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory. Journal of Neuroscience, 2018, 38, 4471-4481.	1.7	63
25	Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum. Journal of Neuroscience, 2018, 38, 3265-3272.	1.7	55
26	Mesoscopic Neural Representations in Spatial Navigation. Trends in Cognitive Sciences, 2019, 23, 615-630.	4.0	53
27	Right-lateralized Brain Oscillations in Human Spatial Navigation. Journal of Cognitive Neuroscience, 2010, 22, 824-836.	1.1	51
28	Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. Journal of Neural Engineering, 2014, 11, 026013.	1.8	51
29	EEG correlates of verbal and nonverbal working memory. Behavioral and Brain Functions, 2005, 1, 20.	1.4	48
30	Grid-like hexadirectional modulation of human entorhinal theta oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10798-10803.	3.3	46
31	A neural code for egocentric spatial maps in the human medial temporal lobe. Neuron, 2021, 109, 2781-2796.e10.	3.8	45
32	Hexadirectional Modulation of High-Frequency Electrophysiological Activity in the Human Anterior Medial Temporal Lobe Maps Visual Space. Current Biology, 2018, 28, 3325-3329.e4.	1.8	42
33	Single-Neuron Representations of Spatial Targets in Humans. Current Biology, 2020, 30, 245-253.e4.	1.8	37
34	Interresponse times in serial recall: Effects of intraserial repetition Journal of Experimental Psychology: Learning Memory and Cognition, 2000, 26, 1188-1197.	0.7	36
35	Contrasting roles of neural firing rate and local field potentials in human memory. Hippocampus, 2007, 17, 606-617.	0.9	36
36	Explaining How Brain Stimulation Can Evoke Memories. Journal of Cognitive Neuroscience, 2012, 24, 553-563.	1.1	36

#	Article	IF	CITATIONS
37	Repeating Spatial Activations in Human Entorhinal Cortex. Current Biology, 2015, 25, 1080-1085.	1.8	30
38	Brain computer interface to enhance episodic memory in human participants. Frontiers in Human Neuroscience, 2014, 8, 1055.	1.0	29
39	Memory retrieval modulates spatial tuning of single neurons in the human entorhinal cortex. Nature Neuroscience, 2019, 22, 2078-2086.	7.1	28
40	Decoding the memorization of individual stimuli with direct human brain recordings. NeuroImage, 2013, 70, 223-232.	2.1	25
41	Spontaneous neuronal oscillations in the human insula are hierarchically organized traveling waves. ELife, 0, 11 , .	2.8	23
42	Repeated stimuli elicit diminished high-gamma electrocorticographic responses. Neurolmage, 2014, 85, 844-852.	2.1	21
43	Spatial Cognition: Grid Cells Support Imagined Navigation. Current Biology, 2016, 26, R277-R279.	1.8	15
44	Uncovering phaseâ€coupled oscillatory networks in electrophysiological data. Human Brain Mapping, 2015, 36, 2655-2680.	1.9	13
45	Human Hippocampal Theta Oscillations during Movement without Visual Cues. Neuron, 2016, 89, 1121-1123.	3.8	9
46	Spatial Memory Rehabilitation in Virtual Reality $\hat{a} \in ``Extending findings from Epilepsy Patients to the General Population.', 2019, , .$		9
47	Human Hippocampal Theta Oscillations: Distinctive Features and Interspecies Commonalities. , 2017, , 37-67.		2
48	The Effect of Navigational Aids on Spatial Memory in Virtual Reality. , 2020, , .		1
49	Jose Delgado: A controversial trailblazer in neuromodulation. Artificial Organs, 2022, 46, 531-540.	1.0	o