Daniela Delli Castelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8045815/publications.pdf

Version: 2024-02-01

66 papers

4,383 citations

32 h-index 102487 66 g-index

74 all docs

74 docs citations

times ranked

74

3746 citing authors

#	Article	IF	Citations
1	Prospects and limitations of paramagnetic chemical exchange saturation transfer agents serving as biological reporters in vivo. NMR in Biomedicine, 2023, 36, e4698.	2.8	10
2	LipHosomes: Reporters for Ligand/Anti‣igand Assays Based On pH Readout. Analysis & Sensing, 2021, 1, 48-53.	2.0	1
3	Regenerative Approaches and Future Trends for the Treatment of Corneal Burn Injuries. Journal of Clinical Medicine, 2021, 10, 317.	2.4	10
4	Detection of U-87 Tumor Cells by RGD-Functionalized/Gd-Containing Giant Unilamellar Vesicles in Magnetization Transfer Contrast Magnetic Resonance Images. Investigative Radiology, 2021, 56, 301-312.	6.2	8
5	Combined NMR, DFT and X-ray studies highlight structural and hydration changes of [Ln(AAZTA)] ^{â^'} complexes across the series. Inorganic Chemistry Frontiers, 2020, 7, 795-803.	6.0	16
6	Multilamellar LipoCEST Agents Obtained from Osmotic Shrinkage of Paramagnetically Loaded Giant Unilamellar Vescicles (GUVs). Angewandte Chemie - International Edition, 2020, 59, 2279-2283.	13.8	5
7	Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. Nanomaterials, 2020, 10, 1115.	4.1	4
8	Multilamellar LipoCEST Agents Obtained from Osmotic Shrinkage of Paramagnetically Loaded Giant Unilamellar Vescicles (GUVs). Angewandte Chemie, 2020, 132, 2299-2303.	2.0	2
9	Development and characterization of lanthanide-HPDO3A-C16-based micelles as CEST-MRI contrast agents. Dalton Transactions, 2019, 48, 5343-5351.	3.3	6
10	Modifying LnHPDO3A Chelates for Improved $\langle i \rangle T \langle i \rangle \langle sub \rangle 1 \langle sub \rangle$ and CEST MRI Applications. Chemistry - A European Journal, 2019, 25, 4184-4193.	3.3	8
11	CESTâ€MRI studies of cells loaded with lanthanide shift reagents. Magnetic Resonance in Medicine, 2018, 80, 1626-1637.	3.0	15
12	Exploiting the Proton Exchange as an Additional Route to Enhance the Relaxivity of Paramagnetic MRI Contrast Agents. Inorganic Chemistry, 2018, 57, 5567-5574.	4.0	23
13	[Yb(AAZTA)(H ₂ 0)] ^{â^'} : an unconventional ParaCEST MRI probe. Chemical Communications, 2018, 54, 2004-2007.	4.1	11
14	Modulation of the Prototropic Exchange Rate in pHâ€Responsive Ybâ€HPDO3A Derivatives as ParaCEST Agents. ChemistrySelect, 2018, 3, 6035-6041.	1.5	11
15	MRI. , 2017, , 227-324.		2
16	Chapter 14 Saturating CompartmentalizedWater Protons: Liposome- and Cell-Based CEST Agents. , 2017, , 311-344.		1
17	LipoCEST and cellCEST imaging agents: opportunities and challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 602-618.	6.1	40
18	<scp>MRI</scp> <scp>CEST</scp> at 1 <scp>T</scp> with large Âμ _{eff} <scp>L</scp> n ³⁺ complexes <scp>T</scp> m ³⁺ â€ <scp>HPDO</scp> 3 <scp>A</scp> : An efficient <scp>MRI</scp> p <scp>H</scp> reporter. Magnetic Resonance in Medicine, 2016, 75, 329-336.	3.0	19

#	Article	IF	Citations
19	Sensitive MRI detection of internalized <i>T</i> ₁ contrast agents using magnetization transfer contrast. NMR in Biomedicine, 2015, 28, 1663-1670.	2.8	11
20	Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound. Journal of Controlled Release, 2015, 202, 21-30.	9.9	52
21	Cardio-Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Reveals Molecular Signatures of Endogenous Fibrosis and Exogenous Contrast Media. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	27
22	Asparagine in plums detected by CEST–MRI. Food Chemistry, 2015, 169, 1-4.	8.2	6
23	Polymeric Vesicles Loaded with Gadoteridol as Reversible and Concentration-Independent Magnetic Resonance Imaging Thermometers. Journal of Biomedical Nanotechnology, 2014, 10, 1620-1626.	1.1	6
24	Highly Shifted Proton MR Imaging: Cell Tracking by Using Direct Detection of Paramagnetic Compounds. Radiology, 2014, 272, 785-795.	7.3	30
25	Design and testing of paramagnetic liposome-based CEST agents for MRI visualization of payload release on pH-induced and ultrasound stimulation. Journal of Biological Inorganic Chemistry, 2014, 19, 207-214.	2.6	20
26	Lanthanide-Loaded Erythrocytes As Highly Sensitive Chemical Exchange Saturation Transfer MRI Contrast Agents. Journal of the American Chemical Society, 2014, 136, 638-641.	13.7	47
27	Successful Entrapping of Liposomes in Glucan Particles: An Innovative Micron-Sized Carrier to Deliver Water-Soluble Molecules. Molecular Pharmaceutics, 2014, 11, 3760-3765.	4.6	22
28	In vivo MRI visualization of release from liposomes triggered by local application of pulsed low-intensity non-focused ultrasound. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e901-e904.	3.3	18
29	In vivo maps of extracellular pH in murine melanoma by CEST–MRI. Magnetic Resonance in Medicine, 2014, 71, 326-332.	3.0	98
30	In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magnetic Resonance in Medicine, 2013, 69, 1703-1711.	3.0	58
31	Nanoparticleâ€based chemical exchange saturation transfer (CEST) agents. NMR in Biomedicine, 2013, 26, 839-849.	2.8	62
32	Combined High Resolution NMR and ¹ H and ¹⁷ O Relaxometric Study Sheds Light on the Solution Structure and Dynamics of the Lanthanide(III) Complexes of HPDO3A. Inorganic Chemistry, 2013, 52, 7130-7138.	4.0	52
33	Release of a Paramagnetic Magnetic Resonance Imaging Agent from Liposomes Triggered by Low Intensity Non-Focused Ultrasound. Journal of Medical Imaging and Health Informatics, 2013, 3, 356-366.	0.3	14
34	Supramolecular Adducts of Negatively Charged Lanthanide(III) DOTP Chelates and Cyclodextrins Functionalized with Ammonium Groups: Mass Spectrometry and Nuclear Magnetic Resonance Studies. European Journal of Inorganic Chemistry, 2012, 2012, 2087-2098.	2.0	6
35	Gadolinium-doped LipoCEST agents: a potential novel class of dual 1H-MRI probes. Chemical Communications, 2011, 47, 4667.	4.1	31
36	MRI Contrast Agents: State of the Art and New Trends. , 2011, , 223-251.		2

#	Article	IF	Citations
37	Yb ^{III} â€HPDO3A: A Dual pH―and Temperatureâ€Responsive CEST Agent. Angewandte Chemie - International Edition, 2011, 50, 1798-1800.	13.8	103
38	MR Contrast Agents., 2011,, 165-193.		0
39	In vivo MRI multicontrast kinetic analysis of the uptake and intracellular trafficking of paramagnetically labeled liposomes. Journal of Controlled Release, 2010, 144, 271-279.	9.9	64
40	Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. Contrast Media and Molecular Imaging, 2010, 5, 78-98.	0.8	113
41	Advances in Metal-Based Probes for MR Molecular Imaging Applications. Current Medicinal Chemistry, 2010, 17, 3684-3700.	2.4	47
42	Block copolymer vesicles containing paramagnetic lanthanide complexes: a novel class of T1- and CEST MRI contrast agents. Soft Matter, 2010, 6, 4847.	2.7	24
43	Challenges for Molecular Magnetic Resonance Imaging. Chemical Reviews, 2010, 110, 3019-3042.	47.7	728
44	Osmotically Shrunken LIPOCEST Agents: An Innovative Class of Magnetic Resonance Imaging Contrast Media Based on Chemical Exchange Saturation Transfer. Chemistry - A European Journal, 2009, 15, 1440-1448.	3.3	50
45	Methods for an improved detection of the MRIâ€CEST effect. Contrast Media and Molecular Imaging, 2009, 4, 237-247.	0.8	54
46	Evidence for <i>in vivo</i> macrophage mediated tumor uptake of paramagnetic/fluorescent liposomes. NMR in Biomedicine, 2009, 22, 1084-1092.	2.8	36
47	Unfolding of the loggerhead sea turtle (Caretta caretta) myoglobin: A 1H-NMR and electronic absorbance study. Protein Science, 2009, 11, 2273-2278.	7.6	1
48	Pushing the Sensitivity Envelope of Lanthanide-Based Magnetic Resonance Imaging (MRI) Contrast Agents for Molecular Imaging Applications. Accounts of Chemical Research, 2009, 42, 822-831.	15.6	327
49	Lanthanide-Loaded Paramagnetic Liposomes as Switchable Magnetically Oriented Nanovesicles. Methods in Enzymology, 2009, 464, 193-210.	1.0	21
50	First <i>exâ€vivo</i> MRI coâ€localization of two LIPOCEST agents. Contrast Media and Molecular Imaging, 2008, 3, 38-43.	0.8	46
51	Development and validation of a smoothingâ€splinesâ€based correction method for improving the analysis of CESTâ€MR images. Contrast Media and Molecular Imaging, 2008, 3, 136-149.	0.8	102
52	Paramagnetic Liposomes as Innovative Contrast Agents for Magnetic Resonance (MR) Molecular Imaging Applications. Chemistry and Biodiversity, 2008, 5, 1901-1912.	2.1	76
53	Determination of water permeability of paramagnetic liposomes of interest in MRI field. Journal of Inorganic Biochemistry, 2008, 102, 1112-1119.	3.5	70
54	Metal containing nanosized systems for MR-Molecular Imaging applications. Coordination Chemistry Reviews, 2008, 252, 2424-2443.	18.8	116

#	Article	IF	CITATIONS
55	Lanthanide-Loaded Paramagnetic Liposomes as Switchable Magnetically Oriented Nanovesicles. Inorganic Chemistry, 2008, 47, 2928-2930.	4.0	26
56	Highly shifted LIPOCEST agents based on the encapsulation of neutral polynuclear paramagnetic shift reagents. Chemical Communications, 2008, , 600-602.	4.1	38
57	Gd-Loaded Liposomes asT1, Susceptibility, and CEST Agents, All in One. Journal of the American Chemical Society, 2007, 129, 2430-2431.	13.7	83
58	From Spherical to Osmotically Shrunken Paramagnetic Liposomes: An Improved Generation of LIPOCEST MRI Agents with Highly Shifted Water Protons. Angewandte Chemie - International Edition, 2007, 46, 966-968.	13.8	87
59	Tunable Imaging of Cells Labeled with MRI-PARACEST Agents. Angewandte Chemie - International Edition, 2005, 44, 1813-1815.	13.8	170
60	Highly Sensitive MRI Chemical Exchange Saturation Transfer Agents Using Liposomes. Angewandte Chemie - International Edition, 2005, 44, 5513-5515.	13.8	185
61	Ln(III)-DOTAMGly Complexes: A Versatile Series to Assess the Determinants of the Efficacy of Paramagnetic Chemical Exchange Saturation Transfer Agents for Magnetic Resonance Imaging Applications. Investigative Radiology, 2004, 39, 235-243.	6.2	112
62	Supramolecular Adducts between Poly-L-arginine and [TmllIdotp]: A Route to Sensitivity-Enhanced Magnetic Resonance Imaging–Chemical Exchange Saturation Transfer Agents. Angewandte Chemie - International Edition, 2003, 42, 4527-4529.	13.8	74
63	A Paramagnetic MRI-CEST Agent Responsive to Lactate Concentration. Journal of the American Chemical Society, 2002, 124, 9364-9365.	13.7	182
64	Novel pH-Reporter MRI Contrast Agents. Angewandte Chemie, 2002, 114, 4510-4512.	2.0	49
65	Novel pH-Reporter MRI Contrast Agents. Angewandte Chemie - International Edition, 2002, 41, 4334-4336.	13.8	198
66	Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magnetic Resonance in Medicine, 2002, 47, 639-648.	3.0	365