Christophe Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8045686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the future trends of soil trace metal contents in French urban gardens. Environmental Science and Pollution Research, 2022, 29, 3900-3917.	2.7	6
2	Assessment for combined phytoremediation and biomass production on a moderately contaminated soil. Environmental Science and Pollution Research, 2022, , 1.	2.7	1
3	The human factor of pedogenesis described by historical trajectories of land use: The case of Paris. Landscape and Urban Planning, 2022, 222, 104393.	3.4	6
4	Simplified performance assessment methodology for addressing soil quality of nature-based solutions. Journal of Soils and Sediments, 2021, 21, 1909-1927.	1.5	8
5	Contribution of chemical inputs on the trace elements concentrations of surface soils in urban allotment gardens. Journal of Soils and Sediments, 2021, 21, 328-337.	1.5	13
6	Impact of city historical management on soil organic carbon stocks in Paris (France). Journal of Soils and Sediments, 2021, 21, 1038-1052.	1.5	13
7	Functional and Taxonomic Diversity of Collembola as Complementary Tools to Assess Land Use Effects on Soils Biodiversity. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	13
8	Pedological characteristics of artificialized soils: A snapshot. Geoderma, 2021, 401, 115321.	2.3	5
9	Trace Elements in Soils and Vegetables from Market Gardens of Urban Areas in Marrakech City. Biological Trace Element Research, 2020, 195, 301-316.	1.9	12
10	Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables – A review. Science of the Total Environment, 2020, 738, 139569.	3.9	31
11	Consideration of soil in urban planning documents—a French case study. Journal of Soils and Sediments, 2019, 19, 3235-3244.	1.5	10
12	Quantification of soil organic carbon stock in urban soils using visible and near infrared reflectance spectroscopy (VNIRS) in situ or in laboratory conditions. Science of the Total Environment, 2019, 686, 764-773.	3.9	27
13	Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosystems, 2019, 22, 553-566.	1.1	14
14	Trace and major element contents, microbial communities, and enzymatic activities of urban soils of Marrakech city along an anthropization gradient. Journal of Soils and Sediments, 2019, 19, 2153-2165.	1.5	24
15	Storage of carbon in constructed technosols: in situ monitoring over a decade. Geoderma, 2019, 337, 641-648.	2.3	23
16	A micromorphological analysis for quantifying structure descriptors in a young constructed technosol. Boletin De La Sociedad Geologica Mexicana, 2019, 71, 11-20.	0.1	3
17	Aggregation and availability of phosphorus in a Technosol constructed from urban wastes. Journal of Soils and Sediments, 2018, 18, 456-466.	1.5	22
18	Spatial variability of trace elements in allotment gardens of four European cities: assessments at city, garden, and plot scale. Journal of Soils and Sediments, 2018, 18, 391-406.	1.5	26

CHRISTOPHE SCHWARTZ

#	Article	IF	CITATIONS
19	Effect of Geogenic Lead on Fungal and Collembolan Communities in Garden Topsoil. Pedosphere, 2018, 28, 215-226.	2.1	8
20	Rapid Changes in Soil Nematodes in the First Years after Technosol Construction for the Remediation of an Industrial Wasteland. Eurasian Soil Science, 2018, 51, 1266-1273.	0.5	13
21	Diversity and activity of soil fauna in an industrial settling pond managed by natural attenuation. Applied Soil Ecology, 2018, 132, 34-44.	2.1	14
22	Estimation of soil organic carbon stocks of two cities, New York City and Paris. Science of the Total Environment, 2018, 644, 452-464.	3.9	52
23	Ranking of wetting–drying, plant, and fauna factors involved in the structure dynamics of a young constructed Technosol. Journal of Soils and Sediments, 2018, 18, 2995-3004.	1.5	2
24	Evolution of iron minerals in a 100 years-old Technosol. Consequences on Zn mobility. Geoderma, 2017, 290, 19-32.	2.3	9
25	Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Science of the Total Environment, 2017, 584-585, 614-621.	3.9	64
26	From atmospheric- to pedo-climate modeling in Technosols: A global scale approach. Geoderma, 2017, 301, 47-59.	2.3	7
27	Modelling pedogenesis of Technosols. Geoderma, 2016, 262, 199-212.	2.3	65
28	How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?. Chemosphere, 2016, 152, 407-414.	4.2	10
29	Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Science of the Total Environment, 2016, 545-546, 40-47.	3.9	91
30	Climatic influence on mobility of organic pollutants in Technosols from contrasted industrial activities. Journal of Soils and Sediments, 2016, 16, 1306-1315.	1.5	6
31	Metal Concentrations in Plants from Mining Areas in South Morocco: Health Risks Assessment of Consumption of Edible and Aromatic Plants. Clean - Soil, Air, Water, 2015, 43, 399-407.	0.7	31
32	Letter to the editors: Phyto-P-mining—secondary urban green recycles phosphorus from soils constructed of urban wastes. Journal of Soils and Sediments, 2015, 15, 1667-1674.	1.5	10
33	Nondestructive monitoring of the effect of biological activity on the pedogenesis of a Technosol. Journal of Soils and Sediments, 2015, 15, 1705-1715.	1.5	15
34	Image analysis of soil thin sections for a nonâ€destructive quantification of aggregation in the early stages of pedogenesis. European Journal of Soil Science, 2014, 65, 485-498.	1.8	17
35	Technosol composition affects Lumbricus terrestris surface cast composition and production. Ecological Engineering, 2014, 67, 238-247.	1.6	16
36	Modelling agronomic properties of Technosols constructed with urban wastes. Waste Management, 2014, 34, 2155-2162.	3.7	67

#	Article	IF	CITATIONS
37	Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination. Biodegradation, 2013, 24, 539-548.	1.5	21
38	Effect of nickel-resistant rhizosphere bacteria on the uptake of nickel by the hyperaccumulator Noccaea caerulescens under controlled conditions. Journal of Soils and Sediments, 2013, 13, 501-507.	1.5	32
39	Contribution of bricks to urban soil properties. Journal of Soils and Sediments, 2013, 13, 575-584.	1.5	58
40	PAH oxidation in aged and spiked soils investigated by column experiments. Chemosphere, 2013, 91, 406-414.	4.2	56
41	Structure of earthworm burrows related to organic matter of a constructed Technosol. Geoderma, 2013, 202-203, 103-111.	2.3	23
42	Evolution of the pore structure of constructed Technosols during early pedogenesis quantified by image analysis. Geoderma, 2013, 207-208, 180-192.	2.3	33
43	Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. Journal of Soils and Sediments, 2013, 13, 519-530.	1.5	36
44	Les sols de jardins, supports d'une agriculture urbaine intensive. VertigO: La Revue Electronique En Sciences De L'environnement, 2013, , .	0.0	12
45	Taxonomic and functional characterization of microbial communities in Technosols constructed for remediation of a contaminated industrial wasteland. Journal of Soils and Sediments, 2012, 12, 1396-1406.	1.5	23
46	Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. Journal of Hazardous Materials, 2012, 231-232, 88-97.	6.5	28
47	Predictability of the Evolution of the Soil Structure using Water Flow Modeling for a Constructed Technosol. Vadose Zone Journal, 2012, 11, .	1.3	19
48	Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere, 2012, 86, 659-664.	4.2	63
49	0–20Âμm aggregate typology based on the nature of aggregative organic materials in a cultivated silty topsoil. Soil Biology and Biochemistry, 2012, 46, 103-114.	4.2	34
50	Using Data Mining to Predict Soil Quality after Application of Biosolids in Agriculture. Journal of Environmental Quality, 2011, 40, 1972-1982.	1.0	9
51	Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments, 2010, 10, 1246-1254.	1.5	121
52	Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. Journal of Hazardous Materials, 2010, 177, 755-761.	6.5	57
53	Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils. Ecological Engineering, 2010, 36, 391-395.	1.6	45
54	Distribution, movement and availability of Cd and Zn in a dredged sediment cultivated with Salix alba. Environmental and Experimental Botany, 2009, 67, 403-414.	2.0	13

Christophe Schwartz

#	Article	IF	CITATIONS
55	Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco). Journal of Soils and Sediments, 2008, 8, 17-22.	1.5	41
56	Soil construction: A step for ecological reclamation of derelict lands. Journal of Soils and Sediments, 2008, 8, 130-136.	1.5	121
57	Impact of chemical oxidation on soil quality. Chemosphere, 2008, 72, 282-289.	4.2	92
58	Co-cropping for phyto-separation of zinc and potassium from sewage sludge. Chemosphere, 2007, 68, 1954-1960.	4.2	27
59	Soil Microbial Diversity as Affected by the Rhizosphere of the Hyperaccumulator Thlaspi Caerulescens Under Natural Conditions. International Journal of Phytoremediation, 2007, 9, 41-52.	1.7	39
60	The Effects of Drying Temperature on the Extractability of Metals from Dredged Sediments. Soil and Sediment Contamination, 2007, 16, 383-396.	1.1	2
61	Road soil retention of Pb leached from MSWI bottom ash. Waste Management, 2007, 27, 840-849.	3.7	25
62	Testing of Outstanding Individuals of <i>Thlaspi Caerulescens</i> for Cadmium Phytoextraction. International Journal of Phytoremediation, 2006, 8, 339-357.	1.7	22
63	Response ofThlaspi caerulescensto Nitrogen, Phosphorus and Sulfur Fertilisation. International Journal of Phytoremediation, 2006, 8, 149-161.	1.7	27
64	Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 2006, 63, 811-817.	4.2	199
65	Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 2006, 63, 802-810.	4.2	121
66	Physicochemical and biological characterisation of different dredged sediment deposit sites in France. Environmental Pollution, 2006, 143, 106-116.	3.7	23
67	ASSESSMENT AND CONTROL OF THE BIOAVAILABILITY OF NICKEL IN SOILS. Environmental Toxicology and Chemistry, 2006, 25, 643.	2.2	109
68	Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. Journal of Environmental Sciences, 2006, 18, 1113-1118.	3.2	23
69	RISK OF CONTAMINATION FOR EDIBLE VEGETABLES GROWING ON SOILS POLLUTED BY POLYCYCLIC AROMATIC HYDROCARBONS. Polycyclic Aromatic Compounds, 2004, 24, 827-836.	1.4	19
70	Hyperaccumulation of Metals byThlaspi caerulescensas Affected by Root Development and Cd–Zn/Ca–Mg Interactions. International Journal of Phytoremediation, 2004, 6, 49-61.	1.7	42
71	Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: Consequences for the assessment of the soil quantity and capacity factors. Plant and Soil, 2004, 262, 289-302.	1.8	65
72	Estimation of atrazine-degrading genetic potential and activity in three French agricultural soils. FEMS Microbiology Ecology, 2004, 48, 425-435.	1.3	48

#	Article	IF	CITATIONS
73	Title is missing!. Plant and Soil, 2003, 249, 19-25.	1.8	79
74	Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil, 2003, 249, 27-35.	1.8	160
75	"Nonavailable―Soil Cadmium Is Bioavailable to Snails: Evidence from Isotopic Dilution Experiments. Environmental Science & Technology, 2003, 37, 81-86.	4.6	35
76	Distribution and Metal-Accumulating Behavior ofThlaspi caerulescensand Associated Metallophytes in France. International Journal of Phytoremediation, 2001, 3, 145-172.	1.7	173
77	Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Science of the Total Environment, 2001, 279, 215-221.	3.9	61
78	Assessment of metal accumulation in plants using MetPAD, a toxicity test specific for heavy metal toxicity. Environmental Toxicology, 2000, 15, 449-455.	2.1	11
79	Title is missing!. Plant and Soil, 2000, 227, 257-263.	1.8	65
80	Title is missing!. Plant and Soil, 1999, 208, 103-115.	1.8	105
81	Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 1998, 209, 133-142.	3.9	223
82	Micropedology to reveal pedogenetic processes in Technosols. Spanish Journal of Soil Science, 0, 8, .	0.0	13
83	Contribution des sols à la production de services écosystémiques en milieu urbain – une revue. Urban	0.3	6