William W Parson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8045568/william-w-parson-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55	4,823	31	56
papers	citations	h-index	g-index
56 ext. papers	4,967 ext. citations	6.5 avg, IF	5.44 L-index

#	Paper	IF	Citations
55	Reorganization Energies, Entropies, and Free Energy Surfaces for Electron Transfer. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 7940-7945	3.4	2
54	Mesoscopic to Macroscopic Electron Transfer by Hopping in a Crystal Network of Cytochromes. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10459-10467	16.4	8
53	Generalizing the Marcus equation. <i>Journal of Chemical Physics</i> , 2020 , 152, 184106	3.9	3
52	Dynamics of the Excited State in Photosynthetic Bacterial Reaction Centers. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 1733-1739	3.4	1
51	Electron-Transfer Dynamics in a Zn-Porphyrin-Quinone Cyclophane: Effects of Solvent, Vibrational Relaxations, and Conical Intersections. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 3854-3863	3.4	14
50	Temperature Dependence of the Rate of Intramolecular Electron Transfer. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 8824-8833	3.4	12
49	Effects of Free Energy and Solvent on Rates of Intramolecular Electron Transfer in Organic Radical Anions. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 7297-7306	2.8	10
48	Vibrational Relaxations and Dephasing in Electron-Transfer Reactions. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 11412-11418	3.4	13
47	Modern Optical Spectroscopy 2015 ,		26
46	Coherence and Dephasing 2015 , 417-462		
45	Pump-Probe Spectroscopy, Photon Echoes and Vibrational Wavepackets 2015 , 463-512		
44	Fluorescence 2015 , 225-296		
43	Competition between tryptophan fluorescence and electron transfer during unfolding of the villin headpiece. <i>Biochemistry</i> , 2014 , 53, 4503-9	3.2	6
42	Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 1790-809	3.4	25
41	A temperature-dependent conformational change of NADH oxidase from Thermus thermophilus HB8. <i>Proteins: Structure, Function and Bioinformatics</i> , 2012 , 80, 546-55	4.2	6
40	Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. <i>Protein Engineering, Design and Selection</i> , 2010 , 23, 327-36	1.9	31
39	Mechanism of Charge Separation in Purple Bacterial Reaction Centers. <i>Advances in Photosynthesis and Respiration</i> , 2009 , 355-377	1.7	36

(1988-2008)

38	Calculations of Electrostatic Energies in Proteins Using Microscopic, Semimicroscopic and Macroscopic Models and Free-Energy Perturbation Approaches. <i>Advances in Photosynthesis and Respiration</i> , 2008 , 401-420	1.7	6
37	Biophysics. Long live electronic coherence!. <i>Science</i> , 2007 , 316, 1438-9	33.3	15
36	Entropy production and the Second Law in photosynthesis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2007 , 1767, 1189-93	4.6	20
35	Modern Optical Spectroscopy 2007 ,		84
34	Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. <i>Chemical Reviews</i> , 2006 , 106, 1737-56	68.1	261
33	Modeling electrostatic effects in proteins. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2006 , 1764, 1647-76	4	433
32	A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. <i>Chemical Physics</i> , 2004 , 296, 201-216	2.3	70
31	Dependence of Photosynthetic Electron-Transfer Kinetics on Temperature and Energy in a Density-Matrix Model <i>Journal of Physical Chemistry B</i> , 2004 , 108, 10474-10483	3.4	65
30	Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. <i>Photosynthesis Research</i> , 2003 , 76, 81-92	3.7	29
29	Dynamics of biochemical and biophysical reactions: insight from computer simulations. <i>Quarterly Reviews of Biophysics</i> , 2001 , 34, 563-679	7	240
28	Resonance Raman Scattering by the Green Fluorescent Protein and an Analogue of Its Chromophore?. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 5316-5322	3.4	72
27	Oscillations of the energy gap for the initial electron-transfer step in bacterial reaction centers. <i>Photosynthesis Research</i> , 1998 , 55, 147-152	3.7	15
26	Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. <i>Biophysical Journal</i> , 1998 , 74, 182-91	2.9	84
25	Orientation of the OH Dipole of Tyrosine (M)210 and Its Effect on Electrostatic Energies in Photosynthetic Bacterial Reaction Centers. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 16761-16770		84
24	Calculations of Electrostatic Energies in Photosynthetic Reaction Centers. <i>Journal of the American Chemical Society</i> , 1995 , 117, 12284-12298	16.4	127
23	Electrostatic control of charge separation in bacterial photosynthesis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1990 , 1017, 251-72	4.6	203
22	Microscopic simulation of quantum dynamics and nuclear tunneling in bacterial reaction centers. <i>Photosynthesis Research</i> , 1989 , 22, 39-46	3.7	13
21	Electron-transfer pathways in the primary event of bacterial photosynthesis. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 2696-2701		133

20	Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis. <i>Journal of the American Chemical Society</i> , 1987 , 109, 6152-6163	16.4	230
19	Spectroscopic properties of photosynthetic reaction centers. 1. Theory. <i>Journal of the American Chemical Society</i> , 1987 , 109, 6143-6152	16.4	217
18	Picosecond Measurements of Electron Transfer in Bacterial Photosynthetic Reaction Centers. <i>ACS Symposium Series</i> , 1986 , 205-218	0.4	1
17	Picosecond kinetics of the initial photochemical electron-transfer reaction in bacterial photosynthetic reaction centers. <i>Biochemistry</i> , 1985 , 24, 7516-21	3.2	328
16	Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1985 , 810, 33-48	4.6	191
15	The question of the intermediate state P+Chl-in bacterial photosynthesis. <i>FEBS Letters</i> , 1985 , 185, 76-8	32 3.8	47
14	Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1984 , 767, 345-61	4.6	229
13	THERMODYNAMICS OF THE PRIMARY REACTIONS OF PHOTOSYNTHESIS. <i>Photochemistry and Photobiology</i> , 1978 , 28, 389-393	3.6	48
12	Primary photochemical processes in isolated reaction centers of Rhodopseudomonas viridis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1978 , 501, 112-26	4.6	185
11	Magnetic field effects on radical pair intermediates in bacterial photosynthesis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1977 , 461, 297-305	4.6	133
10	Electron transfer from photoexcited singlet and triplet bacteriopheophytin. <i>Photochemistry and Photobiology</i> , 1976 , 23, 415-20	3.6	88
9	Excited states of photosynthetic reaction centers at low recox potentials. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1975 , 387, 265-78	4.6	225
8	Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1975 , 408, 189-99	4.6	160
7	Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1974 , 347, 404-16	4.6	79
6	Photooxidation of cytochromes in reaction center preparations from Chromatium and Rhodopseudomonas viridis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1970 , 223, 122-8	4.6	66
5	In Chromatium, a single photochemical reaction center oxidizes both cytochrome C552 and cytochrome C555. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1970 , 205, 232-45	4.6	129
4	The reaction between primary and secondary electron acceptors in bacterial photosynthesis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1969 , 189, 384-96	4.6	89
3	Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1969 , 189, 397-403	4.6	31

LIST OF PUBLICATIONS

2	The role of P870 in bacterial photosynthesis. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1968 , 153, 248-59	4.6	124
1	Flash-induced absorbance changes in Rhodospirillum rubrum chromatophores. <i>Biochimica Et Biophysica Acta - Biophysica Acta - Biophysica Machaelics</i> 1967 131 154-172	4.6	76