
Shakhnoz Azimova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8044615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flavonoids in <i>Scutellaria immaculata</i> and <i>S. ramosissima</i> (Lamiaceae) and their biological activity. Journal of Pharmacy and Pharmacology, 2011, 63, 1346-1357.	1.2	87
2	Transfection of insect cell lines using polyethylenimine. Cytotechnology, 2006, 51, 89-98.	0.7	41
3	Composition of the essential oils of three Uzbek <i>Scutellaria</i> species (Lamiaceae) and their antioxidant activities. Natural Product Research, 2017, 31, 1172-1176.	1.0	29
4	Chemical profiling of Phlomis thapsoides (Lamiaceae) and in vitro testing of its biological activities. Medicinal Chemistry Research, 2016, 25, 2304-2315.	1.1	28
5	Chemical composition, antimicrobial and antioxidant activities of the essential oils of three Uzbek Lamiaceae species. Natural Product Research, 2019, 33, 2394-2397.	1.0	23
6	GC-MS and q-NMR based chemotaxonomic evaluation of two <i>Leonurus</i> species. Phytochemical Analysis, 2016, 27, 284-289.	1.2	11
7	The Homingbac baculovirus cloning system: An alternative way to introduce foreign DNA into baculovirus genomes. Journal of Virological Methods, 2007, 140, 59-65.	1.0	9
8	Composition of essential oils from four Apiaceae and Asteraceae species growing in Uzbekistan. Natural Product Research, 2018, 32, 1118-1122.	1.0	8
9	A comparative study on chemical composition and antimicrobial activity of essential oils from three Phlomis species from Uzbekistan. Natural Product Research, 2021, 35, 696-701.	1.0	7
10	lsolation of cytotoxic sesquiterpene lactones from the <i>Tanacetopsis karataviensis</i> (Kovalevsk.) Kovalevsk. Natural Product Research, 2021, 35, 1939-1948.	1.0	7
11	Component composition of the extracts and essential oils from the <i>Alhagi canescens</i> , growing in Uzbekistan and their antimicrobial activity. Natural Product Research, 2019, 33, 3417-3420.	1.0	6
12	Chemical Constituents of Thymus seravschanicus and Their Biological Activity. Chemistry of Natural Compounds, 2016, 52, 352-355.	0.2	5
13	Chemical Composition of the Essential Oils of Some Central Asian Nepeta Species (Lamiaceae) by GLC-MS. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	4
14	Quaternary structure of cottonseed triacetinase. Chemistry of Natural Compounds, 1976, 12, 721-724.	0.2	3
15	Synthesis of convolinine and cytotoxic activity of alkaloids of the genus Convolvulus and their derivatives. Chemistry of Natural Compounds, 2013, 48, 1039-1041.	0.2	3
16	Chemical Composition of Essential Oil from Dionysia hissarica. Chemistry of Natural Compounds, 2018, 54, 593-594.	0.2	3
17	Comparative study on the chemical composition and biological activities of the essential oils of three Lagochilus species collected from Uzbekistan. Natural Product Research, 2019, 35, 1-5.	1.0	3
18	Synthesis of Derivatives of the 2-Arylquinoline Alkaloid Dubamine and their Cytotoxicity. Chemistry of Natural Compounds, 2020, 56, 511-517.	0.2	3

Shakhnoz Azimova

#	Article	IF	CITATIONS
19	Synthesis and Cytotoxic Activity of a Series of Functionalized Maleopimarimides. Chemistry of Natural Compounds, 2020, 56, 101-104.	0.2	3
20	Use of radioactive—Labeled ABA for rapid determination of leaf abscission periods in cotton seedlings. Plant Molecular Biology Reporter, 2000, 18, 271-274.	1.0	2
21	Preparation of DNA Markers Based on E. Coli Plasmid DNA. Chemistry of Natural Compounds, 2003, 39, 592-594.	0.2	2
22	Biosynthesis of the Recombinant Middle Surface Antigen of the Human Hepatitis B Virus in Silkworm Larvae. Molecular Biology, 2004, 38, 603-607.	0.4	2
23	Synthesis and Biological Activity of 1,11-bis(6,7-Methylenedioxy- and) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T 328-332.	f 50 587 T 0.2	d (6,7-Dim€tr 2
24	Chemical Composition and Anticholinesterase Activity of Lagochilus inebrians. Chemistry of Natural Compounds, 2019, 55, 575-577.	0.2	2
25	Extractives and biological activities of Lamiaceae species growing in Uzbekistan. Holzforschung, 2020, 74, 96-115.	0.9	2
26	Induction of the PAOX1-Promoter and Synthesis of GFP Protein in Wild X-33 Strain Recombinant Pichia pastoris Yeast Cells. Chemistry of Natural Compounds, 2005, 41, 75-78.	0.2	1
27	Synthesis and Cytotoxicity of N-(3,4-Dimethoxyphenyl)Ethylamides of N-Benzoyl-α-Amino Acids. Chemistry of Natural Compounds, 2019, 55, 700-704.	0.2	1
28	Nonpolar Constituents of Inula grandis Roots. Cytotoxic Activity of Igalan. Chemistry of Natural Compounds, 2019, 55, 571-574.	0.2	1
29	The new Schiff bases of 2-alkylthio-5-(4-aminophenyl)-1,3,4-oxadiazoles and their antimicrobial activity. Journal of the Iranian Chemical Society, 2019, 16, 545-551.	1.2	1
30	The amino-acid sequence of triacetinase — A cottonseed esterase. Chemistry of Natural Compounds, 1977, 13, 739-741.	0.2	0
31	Specificity of the triacetinase of cotton seeds. Chemistry of Natural Compounds, 1977, 13, 494-495.	0.2	0
32	Primary structure of triacetinase — An esterase from cotton seeds. Peptides from cyanogen bromide hydrolysis. Chemistry of Natural Compounds, 1977, 13, 608-609.	0.2	0
33	Primary structure of triacetinase III. Amino-acid sequence of the cyanogen bromide fragments. Chemistry of Natural Compounds, 1978, 14, 115-116.	0.2	0
34	Primary structure of triacetinase ? An esterase from cotton seeds III. Peptides from tryptic hydrolysis. Chemistry of Natural Compounds, 1978, 14, 199-205.	0.2	0
35	Primary structure of triacetinase ? An esterase from cotton seeds IV. Peptides of the chymotryptic and thermolytic hydrolysis of cyanogen bromide fragments of triacetinase. Chemistry of Natural Compounds, 1978, 14, 206-209.	0.2	0
36	Modification of electrical characteristics of bilayer lipid membranes by intramitochondrial thyroid hormone receptor. Neuroscience and Behavioral Physiology, 1986, 16, 257-259.	0.2	0

Shakhnoz Azimova

#	Article	IF	CITATIONS
37	Induction of Ca++ transport in human platelets by thyroid hormone receptor of malignant cells. Bulletin of Experimental Biology and Medicine, 1986, 102, 1128-1131.	0.3	0
38	Effect of the pesticide fluometuron (Cotoran) on template RNA synthesis. Bulletin of Experimental Biology and Medicine, 1992, 113, 336-339.	0.3	0
39	Action of the pesticide Cotoran (fluometuron) on RNA synthesis and transport in the rat liver. Bulletin of Experimental Biology and Medicine, 1992, 113, 56-59.	0.3	Ο
40	Synthesis of recombinant DNA with the β-galactosidase gene placed under the control of the baculovirus promoter of the polyhedrin gene. Chemistry of Natural Compounds, 1998, 34, 620-623.	0.2	0
41	ABA-binding protein of the cotton plantGossypium hirsutum and the specificity of its binding with ABA. Chemistry of Natural Compounds, 1998, 34, 624-626.	0.2	Ο
42	Immunochemical Study of Antigenic Determinants of Recombinant HBsAg Produced by Bombyx mori Larvae. Chemistry of Natural Compounds, 2000, 36, 525-527.	0.2	0
43	Interaction of abscisic-acid-binding cotton (Gossypium hirsutum) protein and phytohormones. Chemistry of Natural Compounds, 2000, 36, 311-313.	0.2	Ο
44	Title is missing!. Chemistry of Natural Compounds, 2001, 37, 181-184.	0.2	0
45	Preparation and Properties of Monoclonal Antibodies to Recombinant HBsAg Produced by Silkworm Larvae. Chemistry of Natural Compounds, 2005, 41, 580-582.	0.2	Ο
46	Isolation and Purification of Recombinant HBsAg of Human Hepatitis B Virus from Silkworm Larvae. Chemistry of Natural Compounds, 2005, 41, 583-587.	0.2	0
47	Expression of a foreign gene by cysteine proteinase null recombinant baculovirus. Molecular Biology, 2008, 42, 328-334.	0.4	Ο
48	Phenolic Compounds from the Aerial Part of Geranium transversale and Their Antimicrobial Activity. Chemistry of Natural Compounds, 2019, 55, 348-350.	0.2	0
49	The Use of Different Proteins as a Carrier Protein to Obtaining Morphine-Protein Conjugates for ELISA Diagnosis of Drug Addicts. Journal of Pharmaceutical Research International, 0, , 296-303.	1.0	0
50	Study of the Biological Activity of Alkyl Derivatives of Tetrahydroisoquinolines. Journal of Pharmaceutical Research International, 0, , 238-246.	1.0	0