Sabrina Noel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8044547/publications.pdf Version: 2024-02-01

SARDINA NOFI

#	Article	IF	CITATIONS
1	Correlating genotype with phenotype using CFTRâ€mediated wholeâ€cell Cl ^{â^'} currents in human nasal epithelial cells. Journal of Physiology, 2022, 600, 1515-1531.	2.9	14
2	Inflammation biomarkers in sputum for clinical trials in cystic fibrosis: current understanding and gaps in knowledge. Journal of Cystic Fibrosis, 2022, 21, 691-706.	0.7	8
3	Vardenafil increases intracellular accumulation of the most prevalent mutant CFTR in human bronchial epithelial cells. Biology Open, 2020, 9, .	1.2	1
4	Lung immunoglobulin A immunity dysregulation in cystic fibrosis. EBioMedicine, 2020, 60, 102974.	6.1	22
5	Evaluation of eluforsen, a novel RNA oligonucleotide for restoration of CFTR function in in vitro and murine models of p.Phe508del cystic fibrosis. PLoS ONE, 2019, 14, e0219182.	2.5	21
6	Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Scientific Reports, 2019, 9, 6516.	3.3	61
7	Vardenafil reduces macrophage pro-inflammatory overresponses in cystic fibrosis through PDE5- and CFTR-dependent mechanisms. Clinical Science, 2017, 131, 1107-1121.	4.3	13
8	In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Archives of Toxicology, 2017, 91, 1-33.	4.2	132
9	Azithromycin Attenuates Pseudomonas-Induced Lung Inflammation by Targeting Bacterial Proteins Secreted in the Cultured Medium. Frontiers in Immunology, 2016, 7, 499.	4.8	10
10	Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives. Clinical Pharmacology: Advances and Applications, 2016, Volume 8, 127-140.	1.2	35
11	Strategies in early clinical development for the treatment of basic defects of cystic fibrosis. Expert Opinion on Investigational Drugs, 2016, 25, 423-436.	4.1	18
12	Resveratrol increases F508del-CFTR dependent salivary secretion in cystic fibrosis mice. Biology Open, 2015, 4, 929-936.	1.2	18
13	Lung inflammation in cystic fibrosis: Pathogenesis and novel therapies. Clinical Biochemistry, 2014, 47, 539-546.	1.9	45
14	Roscovitine is a proteostasis regulator that corrects the trafficking defect of <scp>F</scp> 508delâ€ <scp>CFTR</scp> by a <scp>CDK</scp> â€independent mechanism. British Journal of Pharmacology, 2014, 171, 4831-4849.	5.4	26
15	Dysregulated Proinflammatory and Fibrogenic Phenotype of Fibroblasts in Cystic Fibrosis. PLoS ONE, 2013, 8, e64341.	2.5	31
16	Correction of Chloride Transport and Mislocalization of CFTR Protein by Vardenafil in the Gastrointestinal Tract of Cystic Fibrosis Mice. PLoS ONE, 2013, 8, e77314.	2.5	21
17	Cystic fibrosis: Insight into CFTR pathophysiology and pharmacotherapy. Clinical Biochemistry, 2012, 45, 1132-1144.	1.9	119
18	PDE5 Inhibitors as Potential Tools in the Treatment of Cystic Fibrosis. Frontiers in Pharmacology, 2012, 3, 167.	3.5	27

SABRINA NOEL

#	Article	IF	CITATIONS
19	Comparative Variability of Nasal Potential Difference Measurements in Human and Mice. Open Journal of Respiratory Diseases, 2012, 02, 43-56.	0.3	9
20	Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nature Chemical Biology, 2010, 6, 25-33.	8.0	237
21	A Cystic Fibrosis Respiratory Epithelial Cell Chronically Treated by Miglustat Acquires a Non–Cystic Fibrosis–Like Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 217-225.	2.9	54
22	Stimulation of salivary secretion in vivo by CFTR potentiators in Cftr+/+ and Cftrâ^'/â^' mice. Journal of Cystic Fibrosis, 2008, 7, 128-133.	0.7	15
23	Parallel Improvement of Sodium and Chloride Transport Defects by Miglustat (<i>n</i> -Butyldeoxynojyrimicin) in Cystic Fibrosis Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 1016-1023.	2.5	45
24	Discovery of α-Aminoazaheterocycle-Methylglyoxal Adducts as a New Class of High-Affinity Inhibitors of Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 1023-1035.	2.5	16
25	Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the α-glucosidase inhibitor miglustat. FEBS Letters, 2006, 580, 2081-2086.	2.8	123
26	Pharmacological profile of inhibition of the chloride channels activated by extracellular acid in cultured rat Sertoli cells. Reproduction, Nutrition, Development, 2006, 46, 241-255.	1.9	13
27	Discovery of Pyrrolo[2,3-b]pyrazines Derivatives as Submicromolar Affinity Activators of Wild Type, G551D, and F508del Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 349-359.	2.5	39
28	Emerging Roles of microRNAs in Cystic Fibrosis — From Pathogenesis to Development of New Therapies. , 0, , .		2