Karl X Knaup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8044447/publications.pdf Version: 2024-02-01

KADI X KNALID

#	Article	IF	CITATIONS
1	Biallelic <i>ANKS6</i> mutations cause late-onset ciliopathy with chronic kidney disease through YAP dysregulation. Human Molecular Genetics, 2022, 31, 1357-1369.	2.9	5
2	Diverse molecular causes of unsolved autosomal dominant tubulointerstitial kidney diseases. Kidney International, 2022, 102, 405-420.	5.2	10
3	A noninvasive diagnostic approach to retrospective donor HLA typing in kidney transplant patients using urine. Transplant International, 2021, 34, 1226-1238.	1.6	1
4	Molecular diagnosis of kidney transplant failure based on urine. American Journal of Transplantation, 2020, 20, 1410-1416.	4.7	2
5	Dissecting TSC2-mutated renal and hepatic angiomyolipomas in an individual with ARID1B-associated intellectual disability. BMC Cancer, 2019, 19, 435.	2.6	1
6	Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genetics, 2019, 15, e1008088.	3.5	45
7	The Dilemma of Regularly Missed Diagnoses: ADTKD. Archives of Clinical and Medical Case Reports, 2019, 03, .	0.1	2
8	Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling. Journal of Cell Biology, 2018, 217, 1383-1394.	5.2	73
9	Biallelic Expression of Mucin-1 in Autosomal Dominant Tubulointerstitial Kidney Disease: Implications for Nongenetic Disease Recognition. Journal of the American Society of Nephrology: JASN, 2018, 29, 2298-2309.	6.1	25
10	HIF is not essential for suppression of experimental tumor growth by mTOR inhibition. Journal of Cancer, 2017, 8, 1809-1817.	2.5	7
11	4-Azidobenzyl ferrocenylcarbamate as an anticancer prodrug activated under reductive conditions. Journal of Inorganic Biochemistry, 2016, 160, 218-224.	3.5	17
12	Renal uptake of the antiapoptotic protein survivin is mediated by megalin at the apical membrane of the proximal tubule. American Journal of Physiology - Renal Physiology, 2013, 305, F734-F744.	2.7	14
13	Renal Tubular HIF-2α Expression Requires VHL Inactivation and Causes Fibrosis and Cysts. PLoS ONE, 2012, 7, e31034.	2.5	78
14	The GTPase RAB20 is a HIF target with mitochondrial localization mediating apoptosis in hypoxia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1-13.	4.1	28
15	Hypoxiaâ€inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxiaâ€inducible factorâ€1. FASEB Journal, 2010, 24, 4443-4458.	0.5	135
16	Mutual Regulation of Hypoxia-Inducible Factor and Mammalian Target of Rapamycin as a Function of Oxygen Availability. Molecular Cancer Research, 2009, 7, 88-98.	3.4	51
17	Key Role for Activin B in Cellular Transformation after Loss of the von Hippel-Lindau Tumor Suppressor. Molecular and Cellular Biology, 2009, 29, 1707-1718.	2.3	22
18	The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. Journal of Clinical Investigation, 2009, 119, 3373-83.	8.2	82

KARL X KNAUP

#	Article	IF	CITATIONS
19	The specific contribution of hypoxia-inducible factor-2α to hypoxic gene expression in vitro is limited and modulated by cell type-specific and exogenous factors. Experimental Cell Research, 2008, 314, 2016-2027.	2.6	61
20	Role of hypoxia-inducible factor 1alpha in the integrity of articular cartilage in murine knee joints. Arthritis Research and Therapy, 2008, 10, R111.	3.5	51
21	Erythropoietin gene expression in renal carcinoma is considerably more frequent than paraneoplastic polycythemia. International Journal of Cancer, 2007, 121, 2434-2442.	5.1	34
22	No anti-apoptotic effects of single copies of mutant p53 genes in drug-treated tumor cells. Anti-Cancer Drugs, 2004, 15, 679-688.	1.4	4