
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8043811/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Non-isothermal effects in the slippage condition and absolute viscosity for an electroosmotic flow. European Journal of Mechanics, B/Fluids, 2022, 93, 29-41.	1.2	9
2	Magnetohydrodynamic mixed convection and entropy generation analysis of Al2O3-water nanofluid past a confined circular cylinder. International Journal of Mechanical Sciences, 2022, 230, 107542.	3.6	12
3	Experimental study of external lateral flow effects on turbulent isothermal upward/downward slot jets impinging inside an open cavity. International Journal of Mechanical Sciences, 2021, 198, 106343.	3.6	2
4	Vortex induced vibrations of a pivoted finite height cylinder at low Reynolds number. Physics of Fluids, 2021, 33, .	1.6	6
5	Three-dimensional deflecting oscillation of turbulent planar opposed jets confined in an open cavity under crossflow. Physics of Fluids. 2020. 32, 105101. Numerical study of magnetohydrodynamic mixed convection and entropy generation of Al <mml:math< td=""><td>1.6</td><td>2</td></mml:math<>	1.6	2
6	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e4772" altimg="si210.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e4780"</mml:math 	1.1	24
7	altimg="si211.svg"> <mml:msub><mml:mrow /><mml:mrow></mml:mrow>Low temperature first ignition of <i>n</i>>butane. Combustion Theory and Modelling, 2019, 23, 1150-1168.</mml:mrow </mml:msub>	1.0	3
8	Numerical investigation on buoyancy and inclination effects on transient mixed convection in a channel with discretely heated plane symmetric contraction-expansions. International Journal of Thermal Sciences, 2019, 146, 106056.	2.6	3
9	Experimental investigation of opposed rectangular impinging jets confined in an open cavity with vertical crossflow in a rectangular duct. International Journal of Heat and Mass Transfer, 2019, 145, 118745.	2.5	6
10	Experimental study of buoyancy and inclination effects on transient mixed convection heat transfer in a channel with two symmetric open cubic cavities with prescribed heat flux. International Journal of Thermal Sciences, 2019, 140, 71-86.	2.6	8
11	Numerical study of buoyancy and inclination effects on transient mixed convection in a channel with two facing cavities with discrete heating. International Journal of Mechanical Sciences, 2019, 155, 295-314.	3.6	18
12	Experimental investigation of unsteady laminar mixed convection from a horizontal heated cylinder in contra-flow: Buoyancy and confinement effects on the three-dimensional heat transfer response. European Journal of Mechanics, B/Fluids, 2019, 75, 165-179.	1.2	2
13	Stereoscopic TR-PIV measurements of mixed convection flow in a vertical channel with an open cavity with discrete heating. International Journal of Mechanical Sciences, 2019, 150, 427-444.	3.6	13
14	Transient mixed convection in a channel with two facing discretely heated semicircular cavities: Buoyancy, inclination angle, and channel aspect ratio effects. Experimental Heat Transfer, 2019, 32, 337-363.	2.3	5
15	Mathematical model of tidal water transport by a partial blockage of a coastal lagoon. Applied Mathematical Modelling, 2018, 60, 592-605.	2.2	0
16	A Reduced Kinetic Mechanism for the Combustion of <i>n</i> -Butanol. Energy & Fuels, 2018, 32, 867-874.	2.5	13
17	Model of the low-temperature heat release and ignition of n-butanol. Combustion Theory and Modelling, 2018, 22, 1176-1193.	1.0	3
18	Experimental study on laminar flow over two confined isothermal cylinders in tandem during mixed convection. International Journal of Thermal Sciences, 2017, 115, 176-196.	2.6	18

#	Article	IF	CITATIONS
19	Experimental study of mixed convection heat transfer in a vertical channel with a one-sided semicylindrical constriction with prescribed heat flux. International Journal of Heat and Fluid Flow, 2017, 67, 155-167.	1.1	4
20	Numerical investigation of mixed convection heat transfer from two isothermal circular cylinders in tandem arrangement: buoyancy, spacing ratio, and confinement effects. Theoretical and Computational Fluid Dynamics, 2017, 31, 159-187.	0.9	16
21	A reduced reaction mechanism for the combustion of n-butane. Combustion and Flame, 2017, 175, 27-33.	2.8	46
22	Transient mixed convection heat transfer for opposing flow from two discrete flush-mounted heaters in a rectangular channel of finite length: Effect of buoyancy and inclination angle. International Journal of Thermal Sciences, 2016, 104, 357-372.	2.6	7
23	Unsteady mixed convection heat transfer from two confined isothermal circular cylinders in tandem: Buoyancy and tube spacing effects. International Journal of Heat and Fluid Flow, 2016, 60, 12-30.	1.1	13
24	Effects of buoyancy and inclination for opposing mixed convection in a symmetrical heated duct with a plane symmetric sudden contraction–expansion. Experimental Thermal and Fluid Science, 2016, 74, 324-338.	1.5	4
25	Steady and oscillatory laminar opposing mixed convection in a vertical channel of finite length subjected to symmetrical isothermal discrete heat sources. Physics of Fluids, 2015, 27, 063604.	1.6	8
26	Super free fall of an inviscid liquid through interconnected vertical pipes. Europhysics Letters, 2015, 112, 14002.	0.7	1
27	Numerical study on buoyancy and inclination effects on transient laminar opposing mixed convection in rectangular channels with symmetric and discrete heating. International Journal of Heat and Mass Transfer, 2015, 84, 766-785.	2.5	9
28	Unsteady laminar mixed convection heat transfer from a horizontal isothermal cylinder in contra-flow: Buoyancy and wall proximity effects on the flow response and wake structure. Experimental Thermal and Fluid Science, 2014, 52, 30-46.	1.5	13
29	Symmetry Breaking Instability in a Mixed Convection Problem. Environmental Science and Engineering, 2014, , 3-15.	0.1	1
30	Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating Mahogany seed (<i>Swietenia macrophylla</i>). Journal of Experimental Biology, 2013, 216, 2017-30.	0.8	21
31	Transient heating and entropy generation of a fluid inside a large aspect ratio cavity. International Journal of Thermal Sciences, 2013, 64, 220-231.	2.6	8
32	Conjugate Heating Inside a Large Aspect Ratio Cavity with Finite Conductive Walls. Journal of Thermophysics and Heat Transfer, 2013, 27, 679-691.	0.9	0
33	Buoyancy Effect on the Wake of a Confined Circular Cylinder during Opposing Laminar Mixed Convection Heat Transfer. Applied Mechanics and Materials, 2013, 390, 675-679.	0.2	Ο
34	Natural Convection and Entropy Generation in a Large Aspect Ratio Cavity with Walls of Finite Thickness. Environmental Science and Engineering, 2013, , 309-320.	0.1	1
35	Thermal nonlinear oscillator in mixed convection. Physical Review E, 2011, 84, 046310.	0.8	9
36	The secondary splitting of zero-gradient points in a scalar field. Journal of Engineering Mathematics, 2011, 71, 81-95.	0.6	11

#	Article	IF	CITATIONS
37	Catalytic ignition of very lean mixtures of hydrogen. International Journal of Hydrogen Energy, 2011, 36, 8610-8618.	3.8	8
38	Modeling of the catalytic removal of CO and NO in dry combustion gases. AICHE Journal, 2010, 56, 801-809.	1.8	1
39	Variable Thermal Conductivity and Perforation Effects on a Heat-Conducting Plate. Journal of Thermophysics and Heat Transfer, 2010, 24, 665-669.	0.9	2
40	Auto-ignition of methane–air mixtures flowing along an array of thin catalytic plates. Combustion Theory and Modelling, 2010, 15, 47-59.	1.0	0
41	Reduced kinetic mechanism for high-temperature propane ignition. International Journal of Chemical Kinetics, 2008, 40, 721-729.	1.0	4
42	Transient laminar opposing mixed convection in a differentially and asymmetrically heated vertical channel of finite length. International Journal of Heat and Mass Transfer, 2008, 51, 5991-6005.	2.5	22
43	Theoretical analysis of the direct decomposition of methane gas in a laminar stagnation-point flow: CO2-free production of hydrogen. International Journal of Hydrogen Energy, 2008, 33, 7419-7426.	3.8	6
44	The role of duct thickness on the quenching process of premixed flame propagation. Combustion Theory and Modelling, 2008, 12, 115-133.	1.0	5
45	Heat Transfer with a Step in Surface Temperature. Journal of Thermophysics and Heat Transfer, 2008, 22, 118-121.	0.9	0
46	Ignition and combustion of diluted hydrogen mixtures in a flow past an array of catalytic wires. Combustion Theory and Modelling, 2007, 11, 483-499.	1.0	3
47	Particle image velocimetry measurements for opposing flow in a vertical channel with a differential and asymmetric heating condition. Experimental Thermal and Fluid Science, 2007, 32, 262-275.	1.5	15
48	Theoretical analysis for the heterogeneous decomposition of hydrogen sulfide to hydrogen on an iron-metallic plate in a laminar stagnation-point flow. Applied Surface Science, 2006, 253, 2327-2335.	3.1	4
49	Transient Natural Convective Conjugate Cooling Mechanism in Vertical Fins. Journal of Thermophysics and Heat Transfer, 2006, 20, 422-428.	0.9	2
50	Determination of the adsorption and desorption parameters for ethene and propene from measurements of the heterogeneous ignition temperature. Combustion and Flame, 2005, 142, 107-116.	2.8	10
51	The influence of the variable thermal conductivity of a vertical fin on a laminar-film condensation process. Heat and Mass Transfer, 2004, 40, 383-391.	1.2	2
52	Asymptotic and numerical transient analysis of the free convection cooling of a vertical plate embedded in a porous medium. Heat and Mass Transfer, 2004, 40, 593.	1.2	3
53	Oscillatory heat transfer process in a vertical strip immersed in a porous medium. Heat and Mass Transfer, 2004, 40, 937-942.	1.2	1
54	Transient nitrogen injection in a cylindrical porous cap initially filled with natural gas. Journal of Petroleum Science and Engineering, 2004, 43, 1-12.	2.1	0

CéSAR TREVIñO

#	Article	IF	CITATIONS
55	Imbibition in a Hele–Shaw cell under a temperature gradient. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 324, 14-21.	0.9	10
56	Analysis of a forced laminar film condensation including finite longitudinal heat conduction effects. Heat and Mass Transfer, 2003, 39, 489-498.	1.2	4
57	Natural convection in a vertical strip immersed in a porous medium. European Journal of Mechanics, B/Fluids, 2003, 22, 545-553.	1.2	4
58	Determination of Adsorption and Desorption Parameters from Ignition Temperature Measurements in Catalytic Combustion Systems. Journal of Physical Chemistry B, 2003, 107, 2262-2274.	1.2	16
59	Imbibition Driven by a Temperature Gradient. Journal of the Physical Society of Japan, 2003, 72, 979-982.	0.7	8
60	Natural Convective Conjugate Cooling Mechanism in Vertical Fins. Journal of Thermophysics and Heat Transfer, 2003, 17, 396-401.	0.9	2
61	Heat Transfer Analysis on a Moving Flat Sheet Emerging into Quiescent Fluid. Journal of Thermophysics and Heat Transfer, 2002, 16, 373-378.	0.9	7
62	Conjugate free convection along a thin vertical plate with internal nonuniform heat generation in a porous medium. Heat and Mass Transfer, 2002, 38, 631-638.	1.2	10
63	Transient ignition and combustion of diluted hydrogen/air mixtures by a thin catalytic wire. Proceedings of the Combustion Institute, 2002, 29, 981-988.	2.4	5
64	Conjugated heat transfer in circular ducts with a power-law laminar convection fluid flow. International Journal of Heat and Mass Transfer, 2002, 45, 655-666.	2.5	22
65	The conjugate heat transfer from an internal heated small strip in a forced laminar flow. Heat and Mass Transfer, 2001, 37, 485-491.	1.2	2
66	The conjugate conduction–natural convection heat transfer along a thin vertical plate with non-uniform internal heat generation. International Journal of Heat and Mass Transfer, 2000, 43, 2739-2748.	2.5	44
67	Laminar film condensation along a vertical fin. International Journal of Heat and Mass Transfer, 2000, 43, 2859-2868.	2.5	15
68	Autoignition of hydrogen/air mixtures by a thin catalytic wire. Proceedings of the Combustion Institute, 2000, 28, 1359-1364.	2.4	14
69	Gravity induced granular flow measurements in a 2D silo with a lateral bottom exit. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 273, 109-116.	0.9	15
70	Graetz Problem for the Conjugated Conduction-Film Condensation Process. Journal of Thermophysics and Heat Transfer, 2000, 14, 96-102.	0.9	5
71	Catalytic combustion of dry carbon monoxide by external power activation. Surface Science, 2000, 449, 61-74.	0.8	8
72	Effect of longitudinal heat conduction on the catalytic ignition of carbon monoxide in a boundary layer. Combustion Theory and Modelling, 2000, 4, 173-187.	1.0	1

#	Article	IF	CITATIONS
73	An asymptotic analysis of catalytic ignition in a stagnation-point flow. Combustion Theory and Modelling, 1999, 3, 469-477.	1.0	10
74	Catalytic ignition of dry carbon monoxide in a stagnation-point flow. Combustion and Flame, 1999, 119, 505-512.	2.8	6
75	Simplified model for the prediction of ozone generation in polluted urban areas with continuous precursor species emissions. Atmospheric Environment, 1999, 33, 1103-1110.	1.9	7
76	Analysis for the catalytic ignition of methane in a stagnation-point flow. AICHE Journal, 1999, 45, 567-573.	1.8	10
77	On a universal description for the fracture patterns in rotating cohesive granular media. Europhysics Letters, 1999, 45, 269-273.	0.7	2
78	Natural convective cooling of a horizontal heat conducting plate facing up in an otherwise adiabatic cavity. International Journal of Heat and Mass Transfer, 1998, 41, 1983-1991.	2.5	2
79	Experimental study of the tracer in the granular flow in a 2D silo. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 249, 63-68.	0.9	10
80	Velocity field measurements in granular gravity flow in a near 2D silo. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 250, 111-116.	0.9	72
81	Asymptotic analysis of axisymmetric drop spreading. Physical Review E, 1998, 58, 4478-4484.	0.8	11
82	Influence of the aspect ratio of a drop in the spreading process over a horizontal surface. Physical Review E, 1998, 58, 4473-4477.	0.8	4
83	Laminar Film Condensation on a Thin Finite Thickness Plate. Journal of Thermophysics and Heat Transfer, 1997, 11, 119-120.	0.9	6
84	Asymptotic Analysis of the Transient Conjugate Heat Transfer Process Between Two Forced Counterflowing Streams. SIAM Journal on Applied Mathematics, 1997, 57, 577-596.	0.8	3
85	Film condensation induced by a natural convective flow: steady-state analysis. International Journal of Heat and Mass Transfer, 1997, 40, 1279-1289.	2.5	10
86	The classical problem of convective heat transfer in laminar flow over a thin finite thickness plate with uniform temperature at the lower surface. International Journal of Heat and Mass Transfer, 1997, 40, 3577-3580.	2.5	21
87	Laminar film condensation on a thin finite thickness plate. Journal of Thermophysics and Heat Transfer, 1997, 11, 119-121.	0.9	0
88	The effects of displacement induced by thermal perturbations on the structure and stability of boundary-layer flows. Theoretical and Computational Fluid Dynamics, 1996, 8, 57-72.	0.9	3
89	Steady-state analysis of the conjugate heat transfer between forced counterflowing streams. Journal of Thermophysics and Heat Transfer, 1996, 10, 476-483.	0.9	6
90	Conjugate natural convection heat transfer between two fluids separated by a horizontal wall: steady-state analysis. Heat and Mass Transfer, 1996, 31, 353-358.	1.2	5

#	Article	IF	CITATIONS
91	Heat transfer across a vertical wall separating two fluids at different temperatures. International Journal of Heat and Mass Transfer, 1996, 39, 2231-2241.	2.5	12
92	Numerical study of the natural convective cooling of a vertical plate. Heat and Mass Transfer, 1996, 32, 89-95.	1.2	11
93	Transient conjugate condensation process on a vertical plate with finite thermal inertia. International Journal of Heat and Mass Transfer, 1996, 39, 2221-2230.	2.5	4
94	Longitudinal heat conduction effects on a vertical thin plate in a steady laminar condensation process. International Journal of Heat and Fluid Flow, 1996, 17, 517-525.	1.1	2
95	Experimental evidence of density fluctuations in two-dimensional bins. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 223, 105-110.	0.9	9
96	Ignition of catalytic reactions in a vertical wall immersed in a combustible gas. Proceedings of the Combustion Institute, 1996, 26, 1797-1804.	0.3	5
97	Mixing layer ignition of hydrogen. Combustion and Flame, 1995, 103, 129-141.	2.8	16
98	Axisymmetrical rotation of a sand heap. Physical Review E, 1995, 51, 4621-4625.	0.8	14
99	Numerical solution of the conjugate heat transfer between forced counterflowing streams. Heat and Mass Transfer, 1995, 30, 297-302.	1.2	7
100	Effects of longitudinal heat conduction of a vertical thin plate in a natural convective cooling process. Heat and Mass Transfer, 1994, 29, 195-204.	0.2	7
101	Analysis of the thermal diffusion effects on the ignition of hydrogen-air mixtures in the boundary layer of a hot flat plate. Combustion and Flame, 1994, 96, 293-303.	2.8	15
102	Reduced kinetic mechanism for methane ignition. Proceedings of the Combustion Institute, 1992, 24, 121-127.	0.3	25
103	Boundary layer separation by a step in surface temperature. International Journal of Heat and Mass Transfer, 1992, 35, 2725-2738.	2.5	6
104	The asymptotic structure of hydrogen-air diffusion flames. Combustion and Flame, 1992, 91, 246-256.	2.8	21
105	Asymptotic analysis of the high-temperature ignition of CO/H2/O2 mixtures. Combustion and Flame, 1991, 86, 285-295.	2.8	17
106	LDA measurements in the premixed V flame stabilized in the wake of a flat plate boundary layer. Combustion and Flame, 1991, 85, 505-510.	2.8	14
107	Asymptotic Analysis of the Ignition of Hydrogen by a Hot Plate in a Boundary Layer Flow. Combustion Science and Technology, 1991, 78, 197-216.	1.2	27
108	Pressure gradients due to gas expansion in the boundary layer combustion of a condensed fuel. Heat and Mass Transfer, 1990, 25, 309-319.	0.2	1

CéSAR TREVIñO

#	Article	IF	CITATIONS
109	Stability analysis of a simplified model of a fluidized bed combustor. Combustion and Flame, 1990, 80, 399-411.	2.8	0
110	Higher-order effects in boundary-layer premixed combustion. Journal of Propulsion and Power, 1990, 6, 237-242.	1.3	3
111	The Influence of the Lewis Numbers of the Reactants on the Asymptotic Structure of Counterflow and Stagnant Diffusion Flames. Combustion Science and Technology, 1989, 64, 243-261.	1.2	56
112	Transient analysis of carbon combustion in stagnation flow. Combustion and Flame, 1989, 75, 281-295.	2.8	3
113	Heterogeneous ignition of coal dust clouds. Combustion and Flame, 1989, 75, 325-342.	2.8	10
114	Analysis of the structure and mechanisms of extinction of a counterflow methanol-air diffusion flame. Combustion and Flame, 1989, 76, 111-132.	2.8	27
115	Critical conditions for carbon combustion. Proceedings of the Combustion Institute, 1988, 21, 211-219.	0.3	1
116	Role of ionizing radiation in chemical evolution studies. International Journal of Radiation Applications and Instrumentation Nuclear Tracks and Radiation Measurements, 1988, 31, 821-823.	0.0	2
117	Applications of radio and radiation chemistry to chemical evolution studies. Journal of Radioanalytical and Nuclear Chemistry, 1988, 124, 281-288.	0.7	1
118	Premixed Combustion in Boundary Layers for Moderate Values of the Zeldovich Numbers. Combustion Science and Technology, 1986, 48, 129-149.	1.2	13
119	Catalytic combustion in monolith reactors. Chemical Engineering Science, 1986, 41, 2253-2260.	1.9	7
120	Gas Phase Ignition of a Premixed Combustible by Catalytic and Non-Catalytic Cylindrical Surfaces. Combustion Science and Technology, 1986, 48, 45-63.	1.2	8
121	Catalytic ignition by external energy flux: Steady state analysis. Proceedings of the Combustion Institute, 1985, 20, 1853-1859.	0.3	Ο
122	Catalytic combustion in stagnation-point flow. Heat and Mass Transfer, 1985, 19, 159-166.	0.2	2
123	The toroidal thermosyphon with known heat flux. International Journal of Heat and Mass Transfer, 1985, 28, 219-233.	2.5	45
124	A steady-state analysis for variable area one- and two-phase thermosyphon loops. International Journal of Heat and Mass Transfer, 1985, 28, 1711-1719.	2.5	37
125	Cas-phase boundary layer ignition on a catalytic flat plate with heat loss. Combustion and Flame, 1985, 61, 39-49.	2.8	24
126	Transient catalytic ignition on a flat plate with external energy flux. AIAA Journal, 1985, 23, 1716-1723.	1.5	7

#	Article	IF	CITATIONS
127	External heating of a flat plate in a convective flow. International Journal of Heat and Mass Transfer, 1984, 27, 1067-1073.	2.5	29
128	Aerodynamics of Premixed Flames in Flat Plate Boundary Layerst. Combustion Science and Technology, 1984, 38, 293-312.	1.2	1
129	lgnition and Extinction of Catalytic Reactions on a Flat Plate. Combustion Science and Technology, 1984, 38, 113-128.	1.2	18
130	On the influence of the plate thickness on the boundary layer ignition for large activation energies. Combustion and Flame, 1983, 49, 91-100.	2.8	5
131	Gas-Phase Ignition of Premixed Fuel by Catalytic Bodies in Stagnation Flow. Combustion Science and Technology, 1983, 30, 213-229.	1.2	31
132	Effect of prandtl number on boundary layer ignition. Combustion and Flame, 1982, 46, 211-212.	2.8	2
133	Effect of plate thermal resistance on boundary layer ignition. Combustion and Flame, 1981, 43, 121-129.	2.8	6
134	Transient phenomena in boundary layer ignition with finite plate thermal resistance. Proceedings of the Combustion Institute, 1981, 18, 1781-1789.	0.3	2
135	Catalytic Flat Plate Boundary Layer Ignition. Combustion Science and Technology, 1981, 26, 245-251.	1.2	27
136	Unsteady Mixed Convection from Two Isothermal Semicircular Cylinders in Tandem Arrangement. , 0, ,		4