Fabricio Goes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8043767/publications.pdf

Version: 2024-02-01

1163117 1058476 36 291 8 14 citations h-index g-index papers 36 36 36 243 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	On the efficacy, efficiency and emergent behavior of task replication in large distributed systems. Parallel Computing, 2007, 33, 213-234.	2.1	56
2	A machine learning-based approach for thread mapping on transactional memory applications. , 2011, , .		27
3	PSkel: A stencil programming framework for CPUâ€GPU systems. Concurrency Computation Practice and Experience, 2015, 27, 4938-4953.	2.2	27
4	HoningStone: Building Creative Combos With Honing Theory for a Digital Card Game. IEEE Transactions on Games, 2017, 9, 204-209.	1.4	13
5	Adaptive thread mapping strategies for transactional memory applications. Journal of Parallel and Distributed Computing, 2014, 74, 2845-2859.	4.1	12
6	Look-ahead SLP: auto-vectorization in the presence of commutative operations. , 2018, , .		12
7	VW-SLP., 2018,,.		12
8	Dynamic Thread Mapping Based on Machine Learning for Transactional Memory Applications. Lecture Notes in Computer Science, 2012, , 465-476.	1.3	12
9	ClusterSim: a Java-based parallel discrete-event simulation tool for cluster computing. , 0, , .		11
10	TOAST: Automatic tiling for iterative stencil computations on GPUs. Concurrency Computation Practice and Experience, 2017, 29, e4053.	2.2	10
11	<i>HearthBot</i> : An Autonomous Agent Based on Fuzzy ART Adaptive Neural Networks for the Digital Collectible Card Game <i>HearthStone</i> : IEEE Transactions on Games, 2018, 10, 170-181.	1.4	9
12	A Low-Cost Energy-Efficient Raspberry Pi Cluster for Data Mining Algorithms. Lecture Notes in Computer Science, 2017, , 788-799.	1.3	9
13	Reconfigurable Gang Scheduling Algorithm. Lecture Notes in Computer Science, 2005, , 81-101.	1.3	9
14	CAP Bench: a benchmark suite for performance and energy evaluation of lowâ€power manyâ€core processors. Concurrency Computation Practice and Experience, 2017, 29, e3892.	2.2	8
15	Super-Node SLP: Optimized Vectorization for Code Sequences Containing Operators and Their Inverse Elements. , 2019, , .		8
16	Extending Clustersim with MP And DSM Modules. , 2005, , 59-78.		6
17	Difference Based Metrics for Deep Reinforcement Learning Algorithms. IEEE Access, 2019, 7, 159141-159149.	4.2	6
18	Automatic Skeleton-Driven Memory Affinity for Transactional Worklist Applications. International Journal of Parallel Programming, 2014, 42, 365-382.	1.5	5

#	Article	IF	CITATIONS
19	Automatic Partitioning of Stencil Computations on Heterogeneous Systems., 2017, , .		5
20	Extending OpenACC for Efficient Stencil Code Generation and Execution by Skeleton Frameworks. , 2017, , .		5
21	A parallel implementation of a cloud dynamics model with cellular automaton. Mathematics and Computers in Simulation, 2018, 154, 65-93.	4.4	5
22	AnthillSched: A Scheduling Strategy for Irregular and Iterative I/O-Intensive Parallel Jobs. Lecture Notes in Computer Science, 2005, , 108-122.	1.3	5
23	JVM Configuration Parameters Space Exploration for Performance Evaluation of Parallel Applications. IEEE Latin America Transactions, 2015, 13, 2776-2784.	1.6	4
24	Enabling efficient stencil code generation in OpenACC. Procedia Computer Science, 2017, 108, 2333-2337.	2.0	4
25	Creative Culinary Recipe Generation Based on Statistical Language Models. IEEE Access, 2020, 8, 146263-146283.	4.2	4
26	Autotuning Skeleton-Driven Optimizations for Transactional Worklist Applications. IEEE Transactions on Parallel and Distributed Systems, 2012, 23, 2205-2218.	5.6	2
27	Teaching Parallel Programming to Freshmen in an Undergraduate Computer Science Program. , 2019, , .		2
28	Automatic parallelization of recursive functions with rewriting rules. Science of Computer Programming, 2019, 173, 128-152.	1.9	1
29	Development of an Autonomous Agent based on Reinforcement Learning for a Digital Fighting Game., 2020, , .		1
30	Unstructured Data Analysis for Risk Management of Electric Power Transmission Lines. Applied Sciences (Switzerland), 2022, 12, 5292.	2.5	1
31	Performance analysis of parallel programs using Prober as a single aid tool. , 0, , .		0
32	Reconfigurable consistency model for object-based software DSM., 2005,,.		0
33	Reconfigurable consistency algorithm. , 2005, , .		0
34	An Algebraic Framework for Parallelizing Recurrence in Functional Programming. Lecture Notes in Computer Science, 2016, , 140-155.	1.3	0
35	Evolutionary Music Composition for Digital Games Using Regent-Dependent Creativity Metric. , 2017, , .		0
36	Reconfigurable Object Consistency Model for Distributed Shared Memory. Lecture Notes in Computer Science, 2005, , 132-138.	1.3	0