Wonyong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8043743/publications.pdf Version: 2024-02-01

		1163	1044
409	57,990	111	234
papers	citations	h-index	g-index
419	419	419	40310
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1995, 95, 69-96.	23.0	17,205
2	The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 1994, 98, 13669-13679.	2.9	3,486
3	Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 2014, 275, 121-135.	6.5	1,740
4	Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15, 1-20.	5.6	858
5	Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research, 2004, 38, 1069-1077.	5.3	704
6	Platinized WO ₃ as an Environmental Photocatalyst that Generates OH Radicals under Visible Light. Environmental Science & Technology, 2010, 44, 6849-6854.	4.6	663
7	Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. Journal of Physical Chemistry B, 2004, 108, 4086-4093.	1.2	591
8	Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. Environmental Science & Technology, 2016, 50, 10134-10142.	4.6	546
9	Photoinduced charge transfer processes in solar photocatalysis based on modified TiO ₂ . Energy and Environmental Science, 2016, 9, 411-433.	15.6	494
10	The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?. Environmental Science & Technology, 2019, 53, 2937-2947.	4.6	493
11	Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO 2 Photocatalytic Disinfection. Applied and Environmental Microbiology, 2005, 71, 270-275.	1.4	466
12	Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition. Advanced Materials, 2004, 16, 1661-1664.	11.1	455
13	Photocatalytic Nanodiodes for Visible-Light Photocatalysis. Angewandte Chemie - International Edition, 2005, 44, 4585-4589.	7.2	402
14	Visible Light Active Platinum-Ion-Doped TiO2Photocatalyst. Journal of Physical Chemistry B, 2005, 109, 24260-24267.	1.2	384
15	Photocatalytic Oxidation of Arsenite in TiO2 Suspension:  Kinetics and Mechanisms. Environmental Science & Technology, 2002, 36, 3872-3878.	4.6	381
16	Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy and Environmental Science, 2014, 7, 954.	15.6	375
17	Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy and Environmental Science, 2019, 12, 59-95.	15.6	373
18	Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. Journal of Materials Chemistry, 2008, 18, 2379.	6.7	370

#	Article	IF	CITATIONS
19	Substrate-Specific Photocatalytic Activities of TiO ₂ and Multiactivity Test for Water Treatment Application. Environmental Science & Technology, 2008, 42, 294-300.	4.6	361
20	Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2under Visible Light. Environmental Science & Technology, 2003, 37, 147-152.	4.6	353
21	Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Applied Catalysis B: Environmental, 2009, 91, 355-361.	10.8	351
22	Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nature Communications, 2019, 10, 940.	5.8	349
23	Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green Chemistry, 2016, 18, 5391-5411.	4.6	336
24	Solar production of H ₂ O ₂ on reduced graphene oxide–TiO ₂ hybrid photocatalysts consisting of earth-abundant elements only. Energy and Environmental Science, 2014, 7, 4023-4028.	15.6	311
25	Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2. Environmental Science & Technology, 2001, 35, 966-970.	4.6	306
26	Solar Photoconversion Using Graphene/TiO ₂ Composites: Nanographene Shell on TiO ₂ Core versus TiO ₂ Nanoparticles on Graphene Sheet. Journal of Physical Chemistry C, 2012, 116, 1535-1543.	1.5	292
27	Eco-Friendly Photochemical Production of H ₂ O ₂ through O ₂ Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements. ACS Catalysis, 2017, 7, 2886-2895.	5.5	287
28	Effects of Surface Anchoring Groups (Carboxylate vs Phosphonate) in Ruthenium-Complex-Sensitized TiO2 on Visible Light Reactivity in Aqueous Suspensions. Journal of Physical Chemistry B, 2004, 108, 14093-14101.	1.2	281
29	Simultaneous and Synergistic Conversion of Dyes and Heavy Metal Ions in Aqueous TiO2Suspensions under Visible-Light Illumination. Environmental Science & amp; Technology, 2005, 39, 2376-2382.	4.6	275
30	Heteroatom Dopants Promote Twoâ€Electron O ₂ Reduction for Photocatalytic Production of H ₂ O ₂ on Polymeric Carbon Nitride. Angewandte Chemie - International Edition, 2020, 59, 16209-16217.	7.2	270
31	Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nature Communications, 2020, 11, 2455.	5.8	265
32	Kinetics and Mechanisms of Photocatalytic Degradation of (CH3)nNH4-n+(0 ≤≤4) in TiO2Suspension:Â The Role of OH Radicals. Environmental Science & Technology, 2002, 36, 2019-2025.	4.6	264
33	Solid-phase photocatalytic degradation of PVC–TiO 2 polymer composites. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143, 221-228.	2.0	253
34	Visible-Light-Induced Photocatalytic Degradation of 4-Chlorophenol and Phenolic Compounds in Aqueous Suspension of Pure Titania:  Demonstrating the Existence of a Surface-Complex-Mediated Path. Journal of Physical Chemistry B, 2005, 109, 5143-5149.	1.2	252
35	Reductive Defluorination of Aqueous Perfluorinated Alkyl Surfactants: Effects of Ionic Headgroup and Chain Length. Journal of Physical Chemistry A, 2009, 113, 690-696.	1.1	251
36	Time-resolved microwave conductivity. Part 1.—TiO2photoreactivity and size quantization. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3315-3322.	1.7	250

#	Article	IF	CITATIONS
37	TiO ₂ Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. Environmental Science & Technology, 2016, 50, 2556-2563.	4.6	243
38	Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO ₂ /WO ₃ through the Cascadal Electron Transfer. Journal of Physical Chemistry C, 2011, 115, 9797-9805.	1.5	238
39	Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy and Environmental Science, 2012, 5, 7647.	15.6	236
40	Photocatalytic Reactivity of Surface Platinized TiO2:Â Substrate Specificity and the Effect of Pt Oxidation State. Journal of Physical Chemistry B, 2005, 109, 7399-7406.	1.2	227
41	Singlet-Oxygen Generation in Alkaline Periodate Solution. Environmental Science & Technology, 2015, 49, 14392-14400.	4.6	218
42	Effects of TiO2Surface Modifications on Photocatalytic Oxidation of Arsenite:Â The Role of Superoxides. Environmental Science & Technology, 2004, 38, 2928-2933.	4.6	216
43	Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B: Environmental, 2001, 31, 209-220.	10.8	206
44	Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles. Angewandte Chemie International Edition in English, 1994, 33, 1091-1092.	4.4	204
45	Photosynthesis of formate from CO ₂ and water at 1% energy efficiency via copper iron oxide catalysis. Energy and Environmental Science, 2015, 8, 2638-2643.	15.6	204
46	Use of Ultrafiltration Membranes for the Separation of TiO2Photocatalysts in Drinking Water Treatment. Industrial & Engineering Chemistry Research, 2001, 40, 1712-1719.	1.8	198
47	Photoelectrochemical Investigation on Electron Transfer Mediating Behaviors of Polyoxometalate in UV-Illuminated Suspensions of TiO2and Pt/TiO2. Journal of Physical Chemistry B, 2003, 107, 3885-3890.	1.2	197
48	Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS. Journal of Physical Chemistry C, 2008, 112, 12069-12073.	1.5	196
49	Photocatalytic Degradation of Polychlorinated Dibenzo-p-dioxins on TiO2Film under UV or Solar Light Irradiation. Environmental Science & Technology, 2000, 34, 4810-4815.	4.6	195
50	Sequential Process Combination of Photocatalytic Oxidation and Dark Reduction for the Removal of Organic Pollutants and Cr(VI) using Ag/TiO ₂ . Environmental Science & Technology, 2017, 51, 3973-3981.	4.6	193
51	Pure and modified TiO2 photocatalysts and their environmental applications. Catalysis Surveys From Asia, 2006, 10, 16-28.	1.0	191
52	Strategic Modification of BiVO ₄ for Improving Photoelectrochemical Water Oxidation Performance. Journal of Physical Chemistry C, 2013, 117, 9104-9112.	1.5	191
53	Selective Oxidative Degradation of Organic Pollutants by Singlet Oxygen-Mediated Photosensitization: Tin Porphyrin versus C ₆₀ Aminofullerene Systems. Environmental Science & Technology, 2012, 46, 9606-9613.	4.6	190
54	Effect of the Anchoring Group in Ruâ^'Bipyridyl Sensitizers on the Photoelectrochemical Behavior of Dye-Sensitized TiO2Electrodes:Â Carboxylate versus Phosphonate Linkages. Journal of Physical Chemistry B, 2006, 110, 8740-8749.	1.2	188

#	Article	IF	CITATIONS
55	Zero-Valent Aluminum for Oxidative Degradation of Aqueous Organic Pollutants. Environmental Science & Technology, 2009, 43, 7130-7135.	4.6	188
56	Photocatalytic Reactivities of Nafion-Coated TiO2 for the Degradation of Charged Organic Compounds under UV or Visible Light. Journal of Physical Chemistry B, 2005, 109, 11667-11674.	1.2	187
57	Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy, 2020, 69, 104409.	8.2	185
58	Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 241-247.	2.0	184
59	Effect of the Anchoring Group (Carboxylate vs Phosphonate) in Ru-Complex-Sensitized TiO2on Hydrogen Production under Visible Light. Journal of Physical Chemistry B, 2006, 110, 14792-14799.	1.2	180
60	Oxidative Degradation of Organic Compounds Using Zero-Valent Iron in the Presence of Natural Organic Matter Serving as an Electron Shuttle. Environmental Science & Technology, 2009, 43, 878-883.	4.6	178
61	Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nature Communications, 2021, 12, 3701.	5.8	175
62	Enhanced Photocatalytic Production of H ₂ on Mesoporous TiO ₂ Prepared by Template-Free Method:  Role of Interparticle Charge Transfer. Journal of Physical Chemistry C, 2007, 111, 15244-15250.	1.5	173
63	Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 2014, 49, 371-380.	5.3	172
64	Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays. Nano Energy, 2017, 39, 211-218.	8.2	171
65	Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Applied Catalysis B: Environmental, 2018, 229, 121-129.	10.8	171
66	Selective Photocatalytic Oxidation of NH3to N2on Platinized TiO2in Water. Environmental Science & Technology, 2002, 36, 5462-5468.	4.6	168
67	π–π Interaction Between Metal–Organic Framework and Reduced Graphene Oxide for Visible-Light Photocatalytic H ₂ Production. ACS Applied Energy Materials, 2018, 1, 1913-1923.	2.5	168
68	Photoreductive Mechanism of CCl4 Degradation on TiO2 Particles and Effects of Electron Donors. Environmental Science & Technology, 1995, 29, 1646-1654.	4.6	165
69	Heterostructured Visible-Light-Active Photocatalyst of Chromia-Nanoparticle-Layered Titanate. Advanced Functional Materials, 2007, 17, 307-314.	7.8	165
70	Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Physical Chemistry Chemical Physics, 2011, 13, 21392.	1.3	164
71	Oxidation of organic pollutants by peroxymonosulfate activated with low-temperature-modified nanodiamonds: Understanding the reaction kinetics and mechanism. Applied Catalysis B: Environmental, 2018, 237, 432-441.	10.8	161
72	Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 55-60.	2.0	160

#	Article	IF	CITATIONS
73	Harnessing low energy photons (635 nm) for the production of H ₂ O ₂ using upconversion nanohybrid photocatalysts. Energy and Environmental Science, 2016, 9, 1063-1073.	15.6	160
74	Three-Dimensional Type II ZnO/ZnSe Heterostructures and Their Visible Light Photocatalytic Activities. Langmuir, 2011, 27, 10243-10250.	1.6	159
75	Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light. Applied Catalysis B: Environmental, 2010, 100, 77-83.	10.8	156
76	Free Radical Polymerization Initiated and Controlled by Visible Light Photocatalysis at Ambient Temperature. Macromolecules, 2011, 44, 7594-7599.	2.2	156
77	Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Physical Chemistry Chemical Physics, 2013, 15, 6499.	1.3	156
78	N-doped TiO ₂ nanotubes coated with a thin TaO _x N _y layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy and Environmental Science, 2015, 8, 247-257.	15.6	155
79	Boosting up the Low Catalytic Activity of Silver for H ₂ Production on Ag/TiO ₂ Photocatalyst: Thiocyanate as a Selective Modifier. ACS Catalysis, 2016, 6, 821-828.	5.5	153
80	Photoelectrochemical Approach for Metal Corrosion Prevention Using a Semiconductor Photoanode. Journal of Physical Chemistry B, 2002, 106, 4775-4781.	1.2	152
81	Enhanced Remote Photocatalytic Oxidation on Surface-Fluorinated TiO2. Langmuir, 2004, 20, 11523-11527.	1.6	152
82	Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates. Catalysis Today, 2005, 101, 291-297.	2.2	152
83	Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis. Nano Energy, 2017, 42, 58-68.	8.2	151
84	Photocatalysis of Dye-Sensitized TiO ₂ Nanoparticles with Thin Overcoat of Al ₂ O ₃ : Enhanced Activity for H ₂ Production and Dechlorination of CCl ₄ . Journal of Physical Chemistry C, 2009, 113, 10603-10609.	1.5	146
85	Molecular‣evel Understanding of the Photocatalytic Activity Difference between Anatase and Rutile Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 14036-14041.	7.2	143
86	Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment. ACS Catalysis, 2018, 8, 11542-11563.	5.5	138
87	Production of Reactive Oxygen Species by the Reaction of Periodate and Hydroxylamine for Rapid Removal of Organic Pollutants and Waterborne Bacteria. Environmental Science & Technology, 2020, 54, 6427-6437.	4.6	138
88	Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy and Environmental Science, 2012, 5, 6066.	15.6	137
89	Superior Electron Transport and Photocatalytic Abilities of Metal-Nanoparticle-Loaded TiO ₂ Superstructures. Journal of Physical Chemistry C, 2012, 116, 25444-25453.	1.5	135
90	Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy and Environmental Science, 2013, 6, 3732.	15.6	134

#	Article	IF	CITATIONS
91	Advanced Oxidation Process Based on the Cr(III)/Cr(VI) Redox Cycle. Environmental Science & Technology, 2011, 45, 9332-9338.	4.6	132
92	Chromate-Induced Activation of Hydrogen Peroxide for Oxidative Degradation of Aqueous Organic Pollutants. Environmental Science & 2010, 100, 2010, 44, 7232-7237.	4.6	131
93	Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: Effects of wastewater effluent matrix and catalyst modifications. Applied Catalysis B: Environmental, 2014, 147, 8-16.	10.8	130
94	Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO ₂ Nanotube Arrays. Environmental Science & Technology, 2017, 51, 6590-6598.	4.6	130
95	Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde. Applied Catalysis B: Environmental, 2007, 69, 127-132.	10.8	128
96	Tin-porphyrin sensitized TiO2 for the production of H2 under visible light. Energy and Environmental Science, 2010, 3, 1789.	15.6	127
97	Reversing CdS Preparation Order and Its Effects on Photocatalytic Hydrogen Production of CdS/Pt-TiO ₂ Hybrids Under Visible Light. Journal of Physical Chemistry C, 2011, 115, 6141-6148.	1.5	126
98	Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Applied Catalysis B: Environmental, 2018, 220, 1-8.	10.8	125
99	Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environmental Science: Nano, 2019, 6, 3185-3214.	2.2	124
100	Active {001} Facet Exposed TiO ₂ Nanotubes Photocatalyst Filter for Volatile Organic Compounds Removal: From Material Development to Commercial Indoor Air Cleaner Application. Environmental Science & Technology, 2018, 52, 9330-9340.	4.6	121
101	Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions:Â PW12O403-vs TiO2. Journal of Physical Chemistry B, 2004, 108, 6402-6411.	1.2	120
102	Dual Photocatalytic Pathways of Trichloroacetate Degradation on TiO2:  Effects of Nanosized Platinum Deposits on Kinetics and Mechanism. Journal of Physical Chemistry B, 2002, 106, 13311-13317.	1.2	119
103	Solid Phase Photocatalytic Reaction on the Soot/TiO2Interface:Â The Role of Migrating OH Radicals. Journal of Physical Chemistry B, 2002, 106, 11818-11822.	1.2	119
104	Photocatalytic Degradation ofN-Nitrosodimethylamine:Â Mechanism, Product Distribution, and TiO2Surface Modification. Environmental Science & Technology, 2005, 39, 6800-6807.	4.6	118
105	Polymeric Carbon Nitride with Localized Aluminum Coordination Sites as a Durable and Efficient Photocatalyst for Visible Light Utilization. ACS Catalysis, 2018, 8, 4241-4256.	5.5	118
106	Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode. Chemosphere, 2007, 67, 652-659.	4.2	117
107	Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Applied Catalysis A: General, 2008, 346, 149-154.	2.2	115
108	Hydrogen producing water treatment through solar photocatalysis. Energy and Environmental Science, 2010, 3, 1042.	15.6	115

Wonyong Choi

#	Article	IF	CITATIONS
109	Dye decolorization test for the activity assessment of visible light photocatalysts: Realities and limitations. Catalysis Today, 2014, 224, 21-28.	2.2	115
110	Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Physical Chemistry Chemical Physics, 2011, 13, 9425.	1.3	114
111	Platinum-like Behavior of Reduced Graphene Oxide as a Cocatalyst on TiO ₂ for the Efficient Photocatalytic Oxidation of Arsenite. Environmental Science and Technology Letters, 2014, 1, 185-190.	3.9	114
112	Novel Photocatalytic Mechanisms for CHCl3, CHBr3, and CCl3CO2-Degradation and the Fate of Photogenerated Trihalomethyl Radicals on TiO2. Environmental Science & Technology, 1997, 31, 89-95.	4.6	113
113	A Strong Electronic Coupling between Graphene Nanosheets and Layered Titanate Nanoplates: A Softâ€Chemical Route to Highly Porous Nanocomposites with Improved Photocatalytic Activity. Small, 2012, 8, 1038-1048.	5.2	113
114	Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism. Applied Catalysis B: Environmental, 2003, 46, 49-63.	10.8	112
115	Heterogeneous Catalytic Oxidation of As(III) on Nonferrous Metal Oxides in the Presence of H ₂ O ₂ . Environmental Science & Technology, 2015, 49, 3506-3513.	4.6	111
116	UV Photolytic Mechanism ofN-Nitrosodimethylamine in Water:Â Dual Pathways to Methylamine versus Dimethylamine. Environmental Science & Technology, 2005, 39, 2101-2106.	4.6	110
117	New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids. Microporous and Mesoporous Materials, 2003, 58, 131-135.	2.2	108
118	Effect of the Agglomerated State on the Photocatalytic Hydrogen Production with in Situ Agglomeration of Colloidal TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 20451-20457.	1.5	107
119	Photocatalytic Oxidation of Arsenite on TiO2:Â Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors. Environmental Science & Technology, 2006, 40, 7034-7039.	4.6	106
120	Bifunctional Heterogeneous Catalysts for Selective Epoxidation and Visible Light Driven Photolysis: Nickel Oxideâ€Containing Porous Nanocomposite. Advanced Materials, 2008, 20, 539-542.	11.1	106
121	Visible light-induced reactions of humic acids on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 129-135.	2.0	105
122	Photocatalytic activity enhancement of PDI supermolecular via π-π action and energy level adjusting with graphene quantum dots. Applied Catalysis B: Environmental, 2021, 281, 119547.	10.8	104
123	Fullerol–Titania Chargeâ€Transferâ€Mediated Photocatalysis Working under Visible Light. Chemistry - A European Journal, 2009, 15, 10843-10850.	1.7	101
124	Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting. Solar Energy Materials and Solar Cells, 2016, 144, 247-255.	3.0	101
125	Enhanced Redox Conversion of Chromate and Arsenite in Ice. Environmental Science & Technology, 2011, 45, 2202-2208.	4.6	100
126	Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization. Electrochimica Acta, 2014, 141, 113-119.	2.6	98

#	Article	IF	CITATIONS
127	Robust Co-catalytic Performance of Nanodiamonds Loaded on WO ₃ for the Decomposition of Volatile Organic Compounds under Visible Light. ACS Catalysis, 2016, 6, 8350-8360.	5.5	98
128	Effect of Platinum Deposits on TiO2on the Anoxic Photocatalytic Degradation Pathways of Alkylamines in Water:Â Dealkylation and N-Alkylation. Environmental Science & Technology, 2004, 38, 4026-4033.	4.6	97
129	Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate. Carbon, 2011, 49, 3454-3462.	5.4	97
130	TiO2 nanodisks designed for Li-ion batteries: a novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy and Environmental Science, 2013, 6, 2932.	15.6	97
131	Photoreductive Dissolution of Iron Oxides Trapped in Ice and Its Environmental Implications. Environmental Science & Technology, 2010, 44, 4142-4148.	4.6	95
132	Glucose–TiO 2 charge transfer complex-mediated photocatalysis under visible light. Applied Catalysis B: Environmental, 2015, 162, 463-469.	10.8	94
133	Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light. Chemical Communications, 2010, 46, 2477.	2.2	93
134	Role of Interparticle Charge Transfers in Agglomerated Photocatalyst Nanoparticles: Demonstration in Aqueous Suspension of Dye-Sensitized TiO ₂ . Journal of Physical Chemistry Letters, 2013, 4, 189-194.	2.1	93
135	Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Applied Catalysis B: Environmental, 2014, 152-153, 233-240.	10.8	91
136	Selective photocatalytic degradation of aquatic pollutants by titania encapsulated into FAU-type zeolites. Journal of Hazardous Materials, 2011, 188, 198-205.	6.5	89
137	Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. Journal of Catalysis, 2018, 357, 51-58.	3.1	89
138	Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nature Communications, 2021, 12, 2528.	5.8	89
139	Enhancing the photoelectrochemical performance of hematite (α-Fe2O3) electrodes by cadmium incorporation. Applied Catalysis B: Environmental, 2011, 110, 207-215.	10.8	88
140	Spontaneous Generation of H ₂ O ₂ and Hydroxyl Radical through O ₂ Reduction on Copper Phosphide under Ambient Aqueous Condition. Environmental Science & Technology, 2019, 53, 2918-2925.	4.6	88
141	Oxidation on Zerovalent Iron Promoted by Polyoxometalate as an Electron Shuttle. Environmental Science & Technology, 2007, 41, 3335-3340.	4.6	87
142	Complexes of Fe(III)-organic pollutants that directly activate Fenton-like processes under visible light. Applied Catalysis B: Environmental, 2021, 283, 119663.	10.8	87
143	UV Photolytic Mechanism ofN-Nitrosodimethylamine in Water:Â Roles of Dissolved Oxygen and Solution pH. Environmental Science & Technology, 2005, 39, 9702-9709.	4.6	86
144	Activation of peroxymonosulfate on visible light irradiated TiO2 via a charge transfer complex path. Chemical Engineering Journal, 2018, 346, 249-257.	6.6	85

#	Article	IF	CITATIONS
145	OH radicals determined photocatalytic degradation mechanisms of gaseous styrene in TiO2 system under 254 nm versus 185 nm irradiation: Combined experimental and theoretical studies. Applied Catalysis B: Environmental, 2019, 257, 117912.	10.8	84
146	Kinetics and Mechanism of CCl4Photoreductive Degradation on TiO2:Â The Role of Trichloromethyl Radical and Dichlorocarbene. The Journal of Physical Chemistry, 1996, 100, 2161-2169.	2.9	83
147	Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H ₂ Generation. Journal of Physical Chemistry Letters, 2012, 3, 3781-3785.	2.1	83
148	Visible-Light-Sensitized Production of Hydrogen Using Perfluorosulfonate Polymer-Coated TiO2Nanoparticles:Â An Alternative Approach to Sensitizer Anchoring. Langmuir, 2006, 22, 2906-2911.	1.6	82
149	Homogeneous photocatalytic Fe3+/Fe2+ redox cycle for simultaneous Cr(VI) reduction and organic pollutant oxidation: Roles of hydroxyl radical and degradation intermediates. Journal of Hazardous Materials, 2019, 372, 121-128.	6.5	82
150	Photocatalytic Oxidation Mechanism of As(III) on TiO ₂ : Unique Role of As(III) as a Charge Recombinant Species. Environmental Science & Technology, 2010, 44, 9099-9104.	4.6	80
151	Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities. ACS Applied Materials & Interfaces, 2017, 9, 40360-40368.	4.0	80
152	In Situ Photoelectrochemical Chloride Activation Using a WO ₃ Electrode for Oxidative Treatment with Simultaneous H ₂ Evolution under Visible Light. Environmental Science & Technology, 2019, 53, 9926-9936.	4.6	80
153	Graphene oxide embedded into TiO2 nanofiber: Effective hybrid photocatalyst for solar conversion. Journal of Catalysis, 2014, 309, 49-57.	3.1	77
154	Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell. Scientific Reports, 2014, 4, 7450.	1.6	77
155	Arsenite Oxidation Initiated by the UV Photolysis of Nitrite and Nitrate. Environmental Science & Technology, 2014, 48, 4030-4037.	4.6	76
156	How g-C ₃ N ₄ Works and Is Different from TiO ₂ as an Environmental Photocatalyst: Mechanistic View. Environmental Science & Technology, 2020, 54, 497-506.	4.6	76
157	Synergic photocatalytic effects of nitrogen and niobium co-doping in TiO2 for the redox conversion of aquatic pollutants under visible light. Journal of Catalysis, 2014, 310, 91-99.	3.1	75
158	Enhanced hydrogen production from ammonia borane using controlled plasmonic performance ofÂAu nanoparticles deposited on TiO ₂ . Journal of Materials Chemistry A, 2017, 5, 21883-21892.	5.2	75
159	Enhanced photocatalytic mechanism of Ag3PO4 nano-sheets using MS2 (M = Mo, W)/rGO hybrids as co-catalysts for 4-nitrophenol degradation in water. Applied Catalysis B: Environmental, 2018, 232, 11-18.	10.8	75
160	Synergic effect of simultaneous fluorination and platinization of TiO ₂ surface on anoxic photocatalytic degradation of organic compounds. Chemical Communications, 2008, , 756-758.	2.2	74
161	Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental, 2017, 205, 386-392.	10.8	73
162	Highly durable photoelectrochemical H ₂ O ₂ production <i>via</i> dual photoanode and cathode processes under solar simulating and external bias-free conditions. Energy and Environmental Science, 2020, 13, 1730-1742.	15.6	73

#	Article	IF	CITATIONS
163	Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins. Journal of Physical Chemistry C, 2008, 112, 491-499.	1.5	72
164	TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants. Journal of Catalysis, 2017, 346, 92-100.	3.1	71
165	Study on Fe(VI) species as a disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli. Water Research, 2006, 40, 3580-3586.	5.3	70
166	Solar-Powered Production of Molecular Hydrogen from Water. Journal of Physical Chemistry C, 2008, 112, 885-889.	1.5	70
167	Photocatalytic functional coatings of TiO2 thin films on polymer substrate by plasma enhanced atomic layer deposition. Applied Catalysis B: Environmental, 2009, 91, 628-633.	10.8	70
168	Photooxidation of Arsenite under 254 nm Irradiation with a Quantum Yield Higher than Unity. Environmental Science & Technology, 2013, 47, 9381-9387.	4.6	70
169	Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst. Applied Catalysis B: Environmental, 2008, 84, 148-155.	10.8	69
170	Effect of Agglomerated State in Mesoporous TiO ₂ on the Morphology of Photodeposited Pt and Photocatalytic Activity. Journal of Physical Chemistry C, 2012, 116, 17531-17539.	1.5	69
171	Photo-chargeable and dischargeable TiO2 and WO3 heterojunction electrodes. Applied Catalysis B: Environmental, 2012, 115-116, 74-80.	10.8	69
172	Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: Synergistic effects of co-dopants. Applied Catalysis B: Environmental, 2014, 147, 642-650.	10.8	69
173	Nitric Acid Uptake and Decomposition on Black Carbon (Soot) Surfaces:Â Its Implications for the Upper Troposphere and Lower Stratosphere. Journal of Physical Chemistry A, 1998, 102, 7618-7630.	1.1	68
174	Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.		68
175	Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere. Environmental Science & amp; Technology, 2016, 50, 1280-1287.	4.6	67
176	Photoelectrochemical and Photocatalytic Behaviors of Hematite-Decorated Titania Nanotube Arrays: Energy Level Mismatch versus Surface Specific Reactivity. Journal of Physical Chemistry C, 2011, 115, 7134-7142.	1.5	66
177	Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 6583-6588.	7.2	66
178	Holey Pt Nanosheets on NiFe-Hydroxide Laminates: Synergistically Enhanced Electrocatalytic 2D Interface toward Hydrogen Evolution Reaction. ACS Nano, 2020, 14, 10578-10588.	7.3	66
179	Ag(l) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nature Communications, 2020, 11, 967.	5.8	66
180	Significance of Hydrophilic Characters of Organic Dyes in Visible-Light Hydrogen Generation Based on TiO ₂ . Organic Letters, 2010, 12, 460-463.	2.4	65

#	Article	IF	CITATIONS
181	Weak magnetic field accelerates chromate removal by zero-valent iron. Journal of Environmental Sciences, 2015, 31, 175-183.	3.2	64
182	Understanding the Congener-Specific Toxicity in Polychlorinated Dibenzo-p-dioxins:Â Chlorination Pattern and Molecular Quadrupole Moment. Journal of the American Chemical Society, 2002, 124, 144-148.	6.6	63
183	Investigating the Unrevealed Photocatalytic Activity and Stability of Nanostructured Brookite TiO ₂ Film as an Environmental Photocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 16252-16260.	4.0	63
184	Interactions of low energy (10–600 eV) noble gas ions with a graphite surface: surface penetration, trapping and self-sputtering behaviors. Surface Science, 1993, 281, 323-335.	0.8	62
185	Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica. Applied Catalysis B: Environmental, 2009, 91, 157-164.	10.8	62
186	Photocatalytic Decomposition of H ₂ O ₂ on Different TiO ₂ Surfaces Along with the Concurrent Generation of HO ₂ Radicals Monitored Using Cavity Ring Down Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 10090-10097.	1.5	62
187	TiO ₂ Nanotube Array Photoelectrocatalyst and Ni–Sb–SnO ₂ Electrocatalyst Bifacial Electrodes: A New Type of Bifunctional Hybrid Platform for Water Treatment. ACS Applied Materials & Interfaces, 2015, 7, 1907-1914.	4.0	61
188	Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Applied Catalysis B: Environmental, 2021, 286, 119905.	10.8	61
189	Fouling of TiO2 induced by natural organic matters during photocatalytic water treatment: Mechanisms and regeneration strategy. Applied Catalysis B: Environmental, 2021, 294, 120252.	10.8	60
190	Contribution of phytoplankton and bacterial cells to the measured alkalinity of seawater. Limnology and Oceanography, 2006, 51, 331-338.	1.6	59
191	Photocatalytic hydroxylation of benzene to phenol over titanium oxide entrapped into hydrophobically modified siliceous foam. Applied Catalysis B: Environmental, 2011, 102, 132-139.	10.8	59
192	A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO ₂ reduction. Energy and Environmental Science, 2020, 13, 519-526.	15.6	59
193	Heteroatom Dopants Promote Twoâ€Electron O ₂ Reduction for Photocatalytic Production of H ₂ O ₂ on Polymeric Carbon Nitride. Angewandte Chemie, 2020, 132, 16343-16351.	1.6	59
194	A pilot-scale photocatalyst-membrane hybrid reactor: performance and characterization. Water Science and Technology, 2005, 51, 491-497.	1.2	58
195	Electrochromic titania nanotube arrays for the enhanced photocatalytic degradation of phenol and pharmaceutical compounds. Chemical Engineering Journal, 2014, 249, 285-292.	6.6	57
196	Synergistic combination of bandgap-modified carbon nitride and WO3 for visible light-induced oxidation of arsenite accelerated by in-situ Fenton reaction. Applied Catalysis B: Environmental, 2017, 218, 819-824.	10.8	57
197	Substrate-specific mineralization and deactivation behaviors of TiO2 as an air-cleaning photocatalyst. Applied Catalysis B: Environmental, 2020, 275, 119145.	10.8	56
198	DFT Calculation on the Thermodynamic Properties of Polychlorinated Dibenzo-p-dioxins: Intramolecular Clâ''Cl Repulsion Effects and Their Thermochemical Implications. Journal of Physical Chemistry A, 2003, 107, 2693-2699.	1.1	55

#	Article	IF	CITATIONS
199	Remarkably Efficient Photocurrent Generation Based on a [60]Fullerene–Triosmium Cluster/Zn–Porphyrin/Boron–Dipyrrin Triad SAM. Chemistry - A European Journal, 2010, 16, 5586-5599.	1.7	54
200	Chemical Bonding Character and Physicochemical Properties of Mesoporous Zinc Oxide-Layered Titanate Nanocomposites. Journal of Physical Chemistry C, 2007, 111, 1658-1664.	1.5	53
201	A low-cost sensitizer based on a phenolic resin for charge-transfer type photocatalysts working under visible light. Chemical Communications, 2012, 48, 10621.	2.2	53
202	Dual-functional photocatalysis using a ternary hybrid of TiO2 modified with graphene oxide along with Pt and fluoride for H2-producing water treatment. Journal of Catalysis, 2015, 330, 387-395.	3.1	53
203	Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet–Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. Environmental Science & Technology, 2016, 50, 11184-11192.	4.6	53
204	A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel. Chemical Communications, 2001, , 281-282.	2.2	51
205	Visible light activity of TiO2 for the photoreduction of CCl4 and Cr(VI) in the presence of nonionic surfactant (Brij). Applied Catalysis B: Environmental, 2004, 52, 23-32.	10.8	51
206	Oxygen nonstoichiometry (δ) of TiO2â~ʾĨ´-revisited. Journal of Solid State Chemistry, 2005, 178, 185-193.	1.4	51
207	On the l–V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters. Solar Energy Materials and Solar Cells, 2007, 91, 1749-1754.	3.0	51
208	Scaffold-Like Titanium Nitride Nanotubes with a Highly Conductive Porous Architecture as a Nanoparticle Catalyst Support for Oxygen Reduction. ACS Catalysis, 2016, 6, 3914-3920.	5.5	51
209	Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. Angewandte Chemie, 2017, 129, 6683-6688.	1.6	51
210	Visible light-induced catalytic activation of peroxymonosulfate using heterogeneous surface complexes of amino acids on TiO2. Applied Catalysis B: Environmental, 2018, 225, 406-414.	10.8	51
211	Enhanced Removal of Hexavalent Chromium in the Presence of H ₂ O ₂ in Frozen Aqueous Solutions. Environmental Science & Technology, 2015, 49, 10937-10944.	4.6	50
212	Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air. Nature Communications, 2021, 12, 6259.	5.8	50
213	Synthesis of New Visible Light Active Photocatalysts of Ba(In1/3Pb1/3M1/3â€~ÂÂÂ)O3(Mâ€~ = Nb, Ta): A Band Ga Engineering Strategy Based on Electronegativity of a Metal Component. Journal of Physical Chemistry B, 2005, 109, 15001-15007.	р 1.2	49
214	Accelerated dissolution of iron oxides in ice. Atmospheric Chemistry and Physics, 2012, 12, 11125-11133.	1.9	49
215	Photoelectrocatalysis as a high-efficiency platform for pulping wastewater treatment and energy production. Chemical Engineering Journal, 2021, 412, 128612.	6.6	49
216	Effect of magnetic field on the zero valent iron induced oxidation reaction. Journal of Hazardous Materials, 2011, 192, 928-931.	6.5	48

#	Article	IF	CITATIONS
217	PCB levels and congener patterns from Korean municipal waste incinerator stack emissions. Chemosphere, 2002, 49, 205-216.	4.2	47
218	Bicarbonate-induced activation of H 2 O 2 for metal-free oxidative desulfurization. Journal of Hazardous Materials, 2016, 304, 313-319.	6.5	47
219	Dual modification of hematite photoanode by Sn-doping and Nb2O5 layer for water oxidation. Applied Catalysis B: Environmental, 2017, 201, 591-599.	10.8	47
220	Mechanisms of Photocatalytic Molecular Hydrogen and Molecular Oxygen Evolution over La-Doped NaTaO ₃ Particles: Effect of Different Cocatalysts and Their Specific Activity. ACS Catalysis, 2018, 8, 2313-2325.	5.5	46
221	lodide-Mediated Photooxidation of Arsenite under 254 nm Irradiation. Environmental Science & Technology, 2009, 43, 3784-3788.	4.6	45
222	Theoretical Study on the Reaction of OH Radicals with Polychlorinated Dibenzo-p-dioxins. Journal of Physical Chemistry A, 2004, 108, 607-614.	1.1	43
223	Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid. Research on Chemical Intermediates, 2010, 36, 127-140.	1.3	43
224	A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. Applied Catalysis B: Environmental, 2018, 236, 154-161.	10.8	43
225	A Composite Photocatalyst of CdS Nanoparticles Deposited on TiO2 Nanosheets. Journal of Nanoscience and Nanotechnology, 2006, 6, 3642-3646.	0.9	42
226	Optimal Ag concentration for H2 production via Ag:TiO2 nanocomposite thin film photoanode. International Journal of Hydrogen Energy, 2012, 37, 3056-3065.	3.8	41
227	Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions. Environmental Science & Technology, 2015, 49, 12816-12822.	4.6	41
228	Hydrogenated heterojunction of boron nitride and titania enables the photocatalytic generation of H2 in the absence of noble metal catalysts. Applied Catalysis B: Environmental, 2018, 237, 772-782.	10.8	41
229	Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity. Catalysis Today, 2006, 111, 259-265.	2.2	39
230	Selective dual-purpose photocatalysis for simultaneous H ₂ evolution and mineralization of organic compounds enabled by a Cr ₂ O ₃ barrier layer coated on Rh/SrTiO ₃ . Chemical Communications, 2016, 52, 9636-9639.	2.2	39
231	Vertically Aligned Core–Shell PbTiO ₃ @TiO ₂ Heterojunction Nanotube Array for Photoelectrochemical and Photocatalytic Applications. Journal of Physical Chemistry C, 2017, 121, 15063-15070.	1.5	39
232	Remote Photocatalytic Oxidation Mediated by Active Oxygen Species Penetrating and Diffusing through Polymer Membrane over Surface Fluorinated TiO2. Chemistry Letters, 2005, 34, 1630-1631.	0.7	38
233	Enhanced Dissolution of Manganese Oxide in Ice Compared to Aqueous Phase under Illuminated and Dark Conditions. Environmental Science & Technology, 2012, 46, 13160-13166.	4.6	38
234	Visible Light Sensitized Production of Hydroxyl Radicals Using Fullerol as an Electron-Transfer Mediator. Environmental Science & Technology, 2016, 50, 10545-10553.	4.6	37

#	Article	IF	CITATIONS
235	Solar photoelectrochemical synthesis of electrolyte-free H ₂ O ₂ aqueous solution without needing electrical bias and H ₂ . Energy and Environmental Science, 2021, 14, 3110-3119.	15.6	37
236	Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: Effects of electrocatalyst composition and electrolyte. Catalysis Today, 2017, 282, 57-64.	2.2	35
237	Guanidinium-Enhanced Production of Hydrogen on Nafion-Coated Dye/TiO ₂ under Visible Light. Journal of Physical Chemistry Letters, 2010, 1, 1351-1355.	2.1	34
238	Visible light sensitization of TiO ₂ nanoparticles by a dietary pigment, curcumin, for environmental photochemical transformations. RSC Advances, 2017, 7, 32488-32495.	1.7	34
239	Solvent-Specific Photolytic Behavior of Octachlorodibenzo-p-dioxin. Environmental Science & Technology, 2004, 38, 2082-2088.	4.6	33
240	Photocatalytic bacterial inactivation by polyoxometalates. Chemosphere, 2008, 72, 174-181.	4.2	33
241	Two-dimensional RuO ₂ nanosheets as robust catalysts for peroxymonosulfate activation. Environmental Science: Nano, 2019, 6, 2084-2093.	2.2	33
242	Photocatalytic effect of thermal atomic layer deposition of TiO2 on stainless steel. Applied Catalysis B: Environmental, 2011, 104, 6-11.	10.8	32
243	Concentration-Dependent Photoredox Conversion of As(III)/As(V) on Illuminated Titanium Dioxide Electrodes. Environmental Science & Technology, 2012, 46, 5519-5527.	4.6	32
244	Implementation of Ag nanoparticle incorporated WO3 thin film photoanode for hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 2117-2125.	3.8	32
245	LiOH-embedded zeolite for carbon dioxide capture under ambient conditions. Journal of Industrial and Engineering Chemistry, 2015, 22, 350-356.	2.9	32
246	Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation. RSC Advances, 2012, 2, 2205.	1.7	31
247	Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures. Nanoscale, 2013, 5, 6291.	2.8	31
248	Oxidation of aquatic pollutants by ferrous–oxalate complexes under dark aerobic conditions. Journal of Hazardous Materials, 2014, 274, 79-86.	6.5	31
249	C60 aminofullerene-magnetite nanocomposite designed for efficient visible light photocatalysis and magnetic recovery. Carbon, 2014, 69, 92-100.	5.4	31
250	Photocatalytic conversion of acetate into molecular hydrogen and hydrocarbons over Pt/TiO 2 : pH dependent formation of Kolbe and Hofer-Moest products. Journal of Catalysis, 2017, 349, 128-135.	3.1	31
251	Accelerated Reduction of Bromate in Frozen Solution. Environmental Science & Technology, 2017, 51, 8368-8375.	4.6	31
252	Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM hem Global Chemistry limate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2259-2289.	1.3	31

#	Article	IF	CITATIONS
253	Nitrite-Induced Activation of Iodate into Molecular Iodine in Frozen Solution. Environmental Science & Technology, 2019, 53, 4892-4900.	4.6	31
254	Alkali-metal-oxides coated ultrasmall Pt sub-nanoparticles loading on intercalated carbon nitride: Enhanced charge interlayer transportation and suppressed backwark reaction for overall water splitting. Journal of Catalysis, 2019, 377, 72-80.	3.1	30
255	Easy access to highly crystalline mesoporous transition-metal oxides with controllable uniform large pores by using block copolymers synthesized via atom transfer radical polymerization. Microporous and Mesoporous Materials, 2011, 143, 149-156.	2.2	29
256	Triplet–Triplet Annihilation Upconversion in Broadly Absorbing Layered Film Systems for Sub-Bandgap Photocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 13304-13318.	4.0	29
257	Studies on acedan-based mononuclear zinc complexes toward selective fluorescent probes for pyrophosphate. Organic and Biomolecular Chemistry, 2012, 10, 8410.	1.5	28
258	Enhanced photocatalytic activity of {101}-oriented bipyramidal TiO2 agglomerates through interparticle charge transfer. Applied Catalysis B: Environmental, 2015, 176-177, 76-82.	10.8	28
259	Bifunctional Carbon Nitride Exhibiting both Enhanced Photoactivity and Residual Catalytic Activity in the Post-Irradiation Dark Period. ACS Catalysis, 2021, 11, 14941-14955.	5.5	28
260	Photocatalytic Synthesis of Pure and Waterâ€Dispersible Graphene Monosheets. Chemistry - A European Journal, 2012, 18, 2762-2767.	1.7	27
261	Visible light-photosensitized oxidation of organic pollutants using amorphous peroxo-titania. Applied Catalysis B: Environmental, 2018, 225, 487-495.	10.8	27
262	TiO2 modified with both phosphate and platinum and its photocatalytic activities. Applied Catalysis B: Environmental, 2011, 106, 39-39.	10.8	25
263	Squaraine-sensitized composite of a reduced graphene oxide/TiO ₂ photocatalyst: ï€â€"ï€ stacking as a new method of dye anchoring. Journal of Materials Chemistry A, 2015, 3, 232-239.	5.2	25
264	Photoelectrochemical hydrogen production on silicon microwire arrays overlaid with ultrathin titanium nitride. Journal of Materials Chemistry A, 2016, 4, 14008-14016.	5.2	24
265	Ab initio investigations on the HOSO2+O2→SO3+HO2 reaction. Journal of Chemical Physics, 2000, 112, 723-730.	1.2	23
266	To What Extent Can Surface Morphology Influence the Photoelectrochemical Performance of Au:WO ₃ Electrodes?. Journal of Physical Chemistry C, 2015, 119, 1271-1279.	1.5	23
267	Band energy levels and compositions of CdS-based solid solution and their relation with photocatalytic activities. Catalysis Science and Technology, 2013, 3, 1790.	2.1	22
268	Ligand-Specific Dissolution of Iron Oxides in Frozen Solutions. Environmental Science & Technology, 2018, 52, 13766-13773.	4.6	22
269	Abiotic Formation of Humic-Like Substances through Freezing-Accelerated Reaction of Phenolic Compounds and Nitrite. Environmental Science & amp; Technology, 2019, 53, 7410-7418.	4.6	22
270	Photocatalytic production of H2O2 from water and dioxygen only under visible light using organic polymers: Systematic study of the effects of heteroatoms. Applied Catalysis B: Environmental, 2021, 299, 120666.	10.8	22

#	Article	IF	CITATIONS
271	Photoactive component-loaded Nafion film as a platform of hydrogen generation: Alternative utilization of a classical sensitizing system. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 112-118.	2.0	21
272	Ambient-temperature catalytic degradation of aromatic compounds on iron oxide nanorods supported on carbon nanofiber sheet. Applied Catalysis B: Environmental, 2019, 259, 118066.	10.8	21
273	Solar denitrification coupled with <i>in situ</i> water splitting. Energy and Environmental Science, 0, , .	15.6	21
274	Response to Comment on "Oxidative Degradation of Organic Compounds Using Zero-Valent Iron in the Presence of Natural Organic Matter Serving as an Electron Shuttle― Environmental Science & Technology, 2009, 43, 3966-3967.	4.6	20
275	Photocatalytic activities of TiO2 thin films prepared on Galvanized Iron substrate by plasma-enhanced atomic layer deposition. Thin Solid Films, 2010, 518, 4757-4761.	0.8	20
276	TiO ₂ â^'Nafion Photoelectrode Hybridized with Carbon Nanotubes for Sensitized Photochemical Activity. Journal of Physical Chemistry C, 2009, 113, 20974-20979.	1.5	19
277	Recyclable and stable ruthenium catalyst for free radical polymerization at ambient temperature initiated by visible light photocatalysis. Green Chemistry, 2012, 14, 618.	4.6	19
278	Poly(4-vinylphenol) as a new stable and metal-free sensitizer of titania for visible light photocatalysis through ligand-to-metal charge transfer process. Catalysis Today, 2017, 281, 109-116.	2.2	19
279	Understanding the relative efficacies and versatile roles of 2D conductive nanosheets in hybrid-type photocatalyst. Applied Catalysis B: Environmental, 2019, 257, 117875.	10.8	19
280	Simultaneous and Synergic Production of Bioavailable Iron and Reactive Iodine Species in Ice. Environmental Science & Technology, 2019, 53, 7355-7362.	4.6	19
281	Cobalt–Copper Nanoparticles on Three-Dimensional Substrate for Efficient Ammonia Synthesis via Electrocatalytic Nitrate Reduction. Journal of Physical Chemistry C, 2022, 126, 6982-6989.	1.5	18
282	Efficient Destruction of CF4 through In Situ Generation of Alkali Metals from Heated Alkali Halide Reducing Mixtures. Environmental Science & Technology, 2002, 36, 1367-1371.	4.6	17
283	Enhanced photocatalytic degradation of tetramethylammonium on silica-loaded titania. Journal of Applied Electrochemistry, 2005, 35, 757-763.	1.5	17
284	Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink. Colloid and Polymer Science, 2012, 290, 1567-1573.	1.0	17
285	Photochemical removal of hexavalent chromium through iodide oxidation under 254nm irradiation. Separation and Purification Technology, 2012, 91, 18-22.	3.9	17
286	Anodic TiO2 nanotube layer directly formed on the inner surface of Ti pipe for a tubular photocatalytic reactor. Applied Catalysis A: General, 2016, 521, 174-181.	2.2	17
287	Highly efficient hydrogen production using p-Si wire arrays and NiMoZn heterojunction photocathodes. Applied Catalysis B: Environmental, 2017, 217, 615-621.	10.8	17
288	Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. Chemical Engineering Journal, 2020, 388, 124226.	6.6	17

#	Article	IF	CITATIONS
289	Freeze–Thaw Cycle-Enhanced Transformation of Iodide to Organoiodine Compounds in the Presence of Natural Organic Matter and Fe(III). Environmental Science & Technology, 2022, 56, 1007-1016.	4.6	17
290	Photocatalytic reactivity and diffusing OH radicals in the reaction medium containing TiO2 particles. Korean Journal of Chemical Engineering, 2001, 18, 898-902.	1.2	16
291	Ferrioxalate-Polyoxometalate System as a New Chemical Actinometer. Environmental Science & Technology, 2007, 41, 5433-5438.	4.6	16
292	Effects of p- and d-block metal co-substitution on the electronic structure and physicochemical properties of InMO4 (M=Nb and Ta) semiconductors. Chemical Physics Letters, 2007, 434, 251-255.	1.2	16
293	Ruthenium(ii) complexes incorporating the bidentate ligand containing an imidazolium moiety: synthesis, characterization, and electrochemical properties and their application in a visible-light induced hydrogen-evolving system. New Journal of Chemistry, 2013, 37, 3174.	1.4	16
294	Spontaneous oxidation of arsenite on platinized TiO2 through activating molecular oxygen under ambient aqueous condition. Applied Catalysis B: Environmental, 2020, 260, 118146.	10.8	16
295	A Simple Rule for Classification of Polychlorinated Dibenzo-p-dioxin Congeners on the Basis of IR Frequency Patterns. Journal of the American Chemical Society, 2001, 123, 3584-3587.	6.6	15
296	TiO ₂ Photocatalysis for the Redox Conversion of Aquatic Pollutants. ACS Symposium Series, 2011, , 199-222.	0.5	15
297	Photoconversion of Cyanide to Dinitrogen Using the Durable Electrode of a TaON Overlayer-Deposited WO ₃ Film and Visible Light. ACS ES&T Engineering, 2021, 1, 228-238.	3.7	15
298	Novel complexation between ferric ions and nonionic surfactants (Brij) and its visible light activity for CCl4 degradation in aqueous micellar solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165, 43-50.	2.0	14
299	Substitution effect of pentavalent bismuth ions on the electronic structure and physicochemical properties of perovskite-structured Ba(In0.5Ta0.5â^'xBix)O3 semiconductors. Materials Research Bulletin, 2007, 42, 1914-1920.	2.7	14
300	Plasma-Enhanced ALD of TiO[sub 2] Thin Films on SUS 304 Stainless Steel for Photocatalytic Application. Journal of the Electrochemical Society, 2009, 156, D188.	1.3	14
301	Estimation of greenhouse gas emissions from sewer pipeline system. International Journal of Life Cycle Assessment, 2017, 22, 1901-1911.	2.2	14
302	Organometallic Iridium(III) Complex Sensitized Ternary Hybrid Photocatalyst for CO 2 to CO Conversion. Chemistry - A European Journal, 2019, 25, 13609-13623.	1.7	14
303	Cr(VI) Formation via Oxyhalide-Induced Oxidative Dissolution of Chromium Oxide/Hydroxide in Aqueous and Frozen Solution. Environmental Science & Technology, 2020, 54, 14413-14421.	4.6	14
304	Designing Eco-functional Redox Conversions Integrated in Environmental Photo(electro)catalysis. ACS ES&T Engineering, 2022, 2, 1116-1129.	3.7	14
305	Air-water interfacial fluidic sonolysis in superhydrophobic silicon-nanowire-embedded system for fast water treatment. Chemical Engineering Journal, 2019, 358, 1594-1600.	6.6	13
306	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13

#	Article	IF	CITATIONS
307	Quantitative Photoelectrochemical Conversion of Ammonium to Dinitrogen Using a Bromide-Mediated Redox Cycle. ACS ES&T Engineering, 2021, 1, 1287-1297.	3.7	13
308	Preparation of Gold and Platinum Nanoparticles Using Visible Light Activated Felll-complex. Chemistry Letters, 2007, 36, 176-177.	0.7	12
309	Role of valency ordering on the visible light photocatalytic activity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>BaBi</mml:mtext></mml:mrow><mm Chemical Physics Letters, 2008, 452, 264-268.</mm </mml:msubsup></mml:mrow></mml:math 	ıl: 12 w><	:m fil: mn>0.
310	Response to Comment on "Photocatalytic Oxidation of Arsenite on TiO ₂ :  Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors― Environmental Science & Technology, 2007, 41, 6313-6314.	4.6	11
311	Response to Comment on "Platinized WO ₃ as an Environmental Photocatalyst that Generates OH Radicals under Visible Light― Environmental Science & Technology, 2011, 45, 3183-3184.	4.6	11
312	Nanotechnologies for the treatment of water, air and soil. Journal of Hazardous Materials, 2012, 211-212, 1-2.	6.5	11
313	Electrocatalytic cogeneration of reactive oxygen species for synergistic water treatment. Chemical Engineering Journal, 2019, 358, 497-503.	6.6	11
314	DFT Calculation on the Electron Affinity of Polychlorinated Dibenzo-p-dioxins. Bulletin of the Korean Chemical Society, 2003, 24, 792-796.	1.0	11
315	Ruthenium bipyridyl complex-sensitized dechlorination of CCl4 in aqueous micellar solutions under visible light. Journal of Industrial and Engineering Chemistry, 2008, 14, 315-321.	2.9	10
316	Visible light photocatalytic properties of polymorphic brookite titania. Journal of Renewable and Sustainable Energy, 2009, 1, 023101.	0.8	10
317	Nafion-Assisted Noncovalent Assembly of Molecular Sensitizers and Catalysts for Sustained Photoreduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2020, 8, 3709-3717.	3.2	10
318	High-Valent Iron Redox-Mediated Photoelectrochemical Water Oxidation. ACS Energy Letters, 2022, 7, 59-66.	8.8	10
319	Kinetics of the heterogeneous reaction CO + O → CO2on inorganic oxide and water ice surfaces: Implications for the Martian atmosphere. Geophysical Research Letters, 1997, 24, 2957-2960.	1.5	9
320	Ion and X-ray induced decomposition of alkali halates. A comparative study of the radiation induced reaction paths. Radiation Effects and Defects in Solids, 1990, 115, 65-72.	0.4	8
321	Response to Comment on "Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species― Environmental Science & Technology, 2011, 45, 2030-2031.	4.6	7
322	Graphitic domain layered titania nanotube arrays for separation and shuttling of solar-driven electrons. Journal of Materials Chemistry A, 2013, 1, 203-207.	5.2	7
323	Electron shuttling catalytic effect of mellitic acid in zero-valent iron induced oxidative degradation. Catalysis Today, 2017, 282, 65-70.	2.2	7
324	Synergistic effect of Sn doping and hydrogenation on hematite electrodes for photoelectrochemical water oxidation. Materials Chemistry Frontiers, 2021, 5, 6592-6602.	3.2	7

#	Article	IF	CITATIONS
325	Freezing-induced activation of the binary chloride-Oxone system to free chlorine and its application in water treatment. Chemical Engineering Journal, 2022, 428, 131134.	6.6	7
326	Photocatalytic mechanisms and photocatalyst deactivation during the degradation of 5-fluorouracil in water. Catalysis Today, 2023, 410, 45-55.	2.2	6
327	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
328	Correlations among defect type, photoconductivity and photoreactivity of doped TiO2. Korean Journal of Chemical Engineering, 2001, 18, 873-878.	1.2	4
329	A Highly Sensitive Spectrophotometric Method for the Determination of Cr(VI) Concentration. Chemistry Letters, 2005, 34, 816-817.	0.7	4
330	Halide-induced dissolution of lead(IV) oxide in frozen solution. Journal of Hazardous Materials, 2020, 384, 121298.	6.5	4
331	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
332	Low energy threshold behavior of He+, Ne+, and Ar+ ion penetration into a graphite (0001) surface. Chemical Physics Letters, 1990, 173, 316-318.	1.2	3
333	Electron affinity and inversion distortion of dibenzo-p-dioxin. Chemical Physics Letters, 2005, 410, 142-146.	1.2	3
334	Photocatalytic hydrogen production using surface-modified titania nanoparticles. , 2007, , .		3
335	Synergistic Coupling of Fe ₂ O ₃ and Carbon Paper that Enables Photocatalytic Mineralization of Organic Contaminants in the Absence of Chemical Oxidants under Visible Light. ACS ES&T Engineering, 2022, 2, 232-241.	3.7	3
336	Comment on "Photocatalytic Oxidation of Arsenite over TiO ₂ : Is Superoxide the Main Oxidant in Normal Air-Saturated Aqueous Solutions?― Environmental Science & Technology, 2011, 45, 9816-9817.	4.6	2
337	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
338	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
339	Solar Energy Utilization and Photo(electro)catalysis for Sustainable Environment. ACS ES&T Engineering, 2022, 2, 940-941.	3.7	2
340	Synthesis of New Visible Light Active Photocatalysts of Ba(In1/3Pb1/3M′1/3)O3 (M′: Nb, Ta): A Band Cap Engineering Strategy Based on Electronegativity of a Metal Component ChemInform, 2005, 36, no.	0.1	1
341	Catalysis for water purification. Catalysis Today, 2017, 282, 1.	2.2	1
342	Entangled iodine and hydrogen peroxide formation in ice. Physical Chemistry Chemical Physics, 2020, 22, 16532-16535.	1.3	1

Wonyong Choi

#	Article	IF	CITATIONS
343	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
344	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
345	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
346	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
347	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
348	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
349	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
350	Launch of ACS ES&T Engineering and Redefining Environmental Engineering. ACS ES&T Engineering, 2021, 1, 1-2.	3.7	1
351	Fe2O3 nanorods on carbon nanofibers induce spontaneous reductive transformation of inorganic contaminants in ambient aerated water. Chemical Engineering Journal, 2022, 429, 132108.	6.6	1
352	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
353	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
354	CHAPTER 5. Photoexcitation in Pure and Modified Semiconductor Photocatalysts. RSC Energy and Environment Series, 2016, , 110-128.	0.2	1
355	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
356	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
357	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
358	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
359	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
360	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0

Wonyong Choi

#	Article	IF	CITATIONS
361	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	Ο
362	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
363	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	Ο
364	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
365	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
366	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
367	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
368	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
369	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
370	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
371	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
372	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
373	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	Ο
374	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
375	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	Ο
376	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
377	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
378	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0

#	Article	IF	CITATIONS
379	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
380	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
381	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
382	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
383	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
384	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
385	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
386	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
387	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
388	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
389	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
390	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
391	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
392	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
393	Introducing the Inaugural Editorial Board of ACS ES&T Engineering. ACS ES&T Engineering, 2021, 1, 154-156.	3.7	0
394	Synergic Production of Hydrogen and Degradation of Organics Using TiO2 Modified with Dual Surface Components. Rapid Communication in Photoscience, 2012, 1, 46-46.	0.1	0
395	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
396	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0

23

#	Article	IF	CITATIONS
397	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	Ο
398	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
399	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	Ο
400	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
401	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	Ο
402	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
403	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	Ο
404	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
405	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	Ο
406	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
407	The First Year of <i>ACS ES&T Engineering</i> . ACS ES&T Engineering, 2022, 2, 1-2.	3.7	О
408	Highlighting the Works of Our Editorial Boards of <i>ACS ES&T Engineering</i> . ACS ES&T Engineering, 2022, 2, 526-526.	3.7	0
409	<i>ACS ES&T Engineering</i> 's Inaugural Excellence in Review Awards for 2021. ACS ES&T Engineering, 2022, 2, 726-727.	3.7	0