Dave Thirumalai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8043577/publications.pdf

Version: 2024-02-01

277 23,591 80
papers citations h-index

317 317 317 11465
all docs docs citations times ranked citing authors

10158

140

g-index

#	Article	IF	CITATIONS
1	Navigating the folding routes. Science, 1995, 267, 1619-1620.	12.6	1,111
2	Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Physical Review A, 1989, 40, 1045-1054.	2.5	878
3	Molecular crowding enhances native state stability and refolding rates of globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4753-4758.	7.1	512
4	Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16928-16933.	7.1	470
5	p-spin-interaction spin-glass models: Connections with the structural glass problem. Physical Review B, 1987, 36, 5388-5397.	3.2	457
6	Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties. Folding & Design, 1997, 2, 1-22.	4.5	390
7	Chaperonin-Mediated Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 2001, 30, 245-269.	18.3	364
8	Dissecting the Assembly of Aβ16–22 Amyloid Peptides into Antiparallel β Sheets. Structure, 2003, 11, 295-307.	3.3	360
9	The nature of folded states of globular proteins. Biopolymers, 1992, 32, 695-709.	2.4	356
10	Kinetics and thermodynamics of folding in model proteins Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6369-6372.	7.1	345
11	Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 111-116.	7.1	344
12	Kinetics of protein folding: Nucleation mechanism, time scales, and pathways. Biopolymers, 1995, 36, 83-102.	2.4	340
13	Dynamics of the Structural Glass Transition and thep-Spin—Interaction Spin-Glass Model. Physical Review Letters, 1987, 58, 2091-2094.	7.8	325
14	Interactions between Hydrophobic and Ionic Solutes in Aqueous Guanidinium Chloride and Urea Solutions:Â Lessons for Protein Denaturation Mechanism. Journal of the American Chemical Society, 2007, 129, 7346-7353.	13.7	324
15	Pair potentials for protein folding: Choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Science, 1999, 8, 361-369.	7.6	302
16	Role of Water in Protein Aggregation and Amyloid Polymorphism. Accounts of Chemical Research, 2012, 45, 83-92.	15.6	301
17	Hydrophobic Interactions in Aqueous Urea Solutions with Implications for the Mechanism of Protein Denaturation. Journal of the American Chemical Society, 1998, 120, 427-428.	13.7	290
18	Kinetics of Folding of Proteins and RNA. Accounts of Chemical Research, 1996, 29, 433-439.	15.6	256

#	Article	IF	Citations
19	RNA and Protein Folding: Common Themes and Variationsâ€. Biochemistry, 2005, 44, 4957-4970.	2.5	252
20	Toward a Molecular Theory of Early and Late Events in Monomer to Amyloid Fibril Formation. Annual Review of Physical Chemistry, 2011, 62, 437-463.	10.8	249
21	Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7664-7669.	7.1	248
22	Mechanisms and kinetics of beta -hairpin formation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2544-2549.	7.1	244
23	Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4030-4035.	7.1	242
24	Viscosity Dependence of the Folding Rates of Proteins. Physical Review Letters, 1997, 79, 317-320.	7.8	230
25	Capturing the essence of folding and functions of biomolecules using coarse-grained models. Nature Communications, 2011, 2, 487.	12.8	222
26	Mechanical unfolding of RNA hairpins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6789-6794.	7.1	215
27	Pathways and Kinetic Barriers in Mechanical Unfolding and Refolding of RNA and Proteins. Structure, 2006, 14, 1633-1645.	3.3	201
28	Dynamics of Asp23â^'Lys28 Salt-Bridge Formation in AÎ210-35Monomers. Journal of the American Chemical Society, 2006, 128, 16159-16168.	13.7	200
29	EARLY EVENTS IN RNA FOLDING. Annual Review of Physical Chemistry, 2001, 52, 751-762.	10.8	195
30	Folding of RNA involves parallel pathways. Journal of Molecular Biology, 1997, 273, 7-13.	4.2	192
31	Theoretical Perspectives on Protein Folding. Annual Review of Biophysics, 2010, 39, 159-183.	10.0	183
32	Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13403-13408.	7.1	182
33	Path integral Monte Carlo studies of the behavior of excess electrons in simple fluids. Journal of Chemical Physics, 1987, 86, 5689-5702.	3.0	179
34	Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. Journal of Molecular Biology, 2001, 306, 1157-1166.	4.2	179
35	From Minimal Models to Real Proteins: Time Scales for Protein Folding Kinetics. Journal De Physique, I, 1995, 5, 1457-1467.	1.2	178
36	Charge Density of Divalent Metal Cations Determines RNA Stability. Journal of the American Chemical Society, 2007, 129, 2676-2682.	13.7	169

#	Article	IF	CITATIONS
37	Native topology determines force-induced unfolding pathways in globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7254-7259.	7.1	164
38	Deciphering the timescales and mechanisms of protein folding using minimal off-lattice models. Current Opinion in Structural Biology, 1999, 9, 197-207.	5.7	163
39	Ergodic behavior in supercooled liquids and in glasses. Physical Review A, 1989, 39, 3563-3574.	2.5	161
40	Exploring protein aggregation and self-propagation using lattice models: Phase diagram and kinetics. Protein Science, 2002, 11, 1036-1049.	7.6	160
41	Asymmetry in the Shapes of Folded and Denatured States of Proteins. Journal of Physical Chemistry B, 2004, 108, 6564-6570.	2.6	158
42	Kinetics and Thermodynamics of Folding of ade NovoDesigned Four-helix Bundle Protein. Journal of Molecular Biology, 1996, 263, 323-343.	4.2	150
43	Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments?. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10249-10253.	7.1	148
44	Influence of Preformed Asp23â^'Lys28 Salt Bridge on the Conformational Fluctuations of Monomers and Dimers of Al 2 Peptides with Implications for Rates of Fibril Formation. Journal of Physical Chemistry B, 2009, 113, 1162-1172.	2.6	147
45	Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20268-20273.	7.1	145
46	Ribosome exit tunnel can entropically stabilize \hat{A} -helices. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18956-18961.	7.1	140
47	Coarse-Grained Model for Predicting RNA Folding Thermodynamics. Journal of Physical Chemistry B, 2013, 117, 4901-4911.	2.6	140
48	Dynamics of allosteric transitions in GroEL. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18939-18944.	7.1	139
49	Activated dynamics, loss of ergodicity, and transport in supercooled liquids. Physical Review E, 1993, 47, 479-489.	2.1	134
50	Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. Journal of Molecular Biology, 1999, 287, 627-644.	4.2	134
51	Random solutions from a regular density functional Hamiltonian: a static and dynamical theory for the structural glass transition. Journal of Physics A, 1989, 22, L149-L155.	1.6	133
52	Minimum energy compact structures of random sequences of heteropolymers. Physical Review Letters, 1993, 71, 2505-2508.	7.8	133
53	Cooperativity in protein folding: from lattice models with sidechains to real proteins. Folding & Design, 1998, 3, 127-139.	4.5	129
54	Interphase human chromosome exhibits out of equilibrium glassy dynamics. Nature Communications, 2018, 9, 3161.	12.8	127

#	Article	IF	CITATIONS
55	Collapse transition in proteins. Physical Chemistry Chemical Physics, 2009, 11, 83-93.	2.8	125
56	Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2019, 123, 3462-3474.	2.6	125
57	Network of Dynamically Important Residues in the Open/Closed Transition in Polymerases Is Strongly Conserved. Structure, 2005, 13, 565-577.	3.3	117
58	Size, shape, and flexibility of RNA structures. Journal of Chemical Physics, 2006, 125, 194905.	3.0	117
59	<i>Colloquium</i> : Random first order transition theory concepts in biology and physics. Reviews of Modern Physics, 2015, 87, 183-209.	45.6	117
60	Role of counterion condensation in folding of the Tetrahymena ribozyme II. Counterion-dependence of folding kinetics. Journal of Molecular Biology, 2001, 309, 57-68.	4.2	114
61	Allosteric Transitions in the Chaperonin GroEL are Captured by a Dominant Normal Mode that is Most Robust to Sequence Variations. Biophysical Journal, 2007, 93, 2289-2299.	0.5	111
62	How do metal ions direct ribozyme folding?. Nature Chemistry, 2015, 7, 793-801.	13.6	110
63	Effects of Macromolecular Crowding on the Collapse of Biopolymers. Physical Review Letters, 2015, 114, 068303.	7.8	109
64	Comparison between dynamical theories and metastable states in regular and glassy mean-field spin models with underlying first-order-like phase transitions. Physical Review A, 1988, 37, 4439-4448.	2.5	106
65	Protein folding guides disulfide bond formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11241-11246.	7.1	105
66	Factors Governing Fibrillogenesis of Polypeptide Chains Revealed by Lattice Models. Physical Review Letters, 2010, 105, 218101.	7.8	104
67	Mean-field soft-spin Potts glass model: Statics and dynamics. Physical Review B, 1988, 37, 5342-5350.	3.2	103
68	Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nature Communications, 2018, 9, 4152.	12.8	102
69	Stretching single-domain proteins: Phase diagram and kinetics of force-induced unfolding. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6166-6170.	7.1	101
70	Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17349-17354.	7.1	100
71	Time scales and pathways for kinetic energy relaxation in solvated proteins: Application to carbonmonoxy myoglobin. Journal of Chemical Physics, 2000, 113, 7702-7711.	3.0	99
72	Theoretical predictions of folding pathways by using the proximity rule, with applications to bovine pancreatic trypsin inhibitor Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1277-1281.	7.1	97

#	Article	IF	CITATIONS
73	Lattice models for proteins reveal multiple folding nuclei for nucleation-collapse mechanism 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1998, 282, 471-492.	4.2	96
74	Structures of β-Amyloid Peptide 1â^'40, 1â^'42, and 1â^'55â€"the 672â^'726 Fragment of APPâ€"in a Membrane Environment with Implications for Interactions with γ-Secretase. Journal of the American Chemical Society, 2009, 131, 17843-17852.	13.7	95
7 5	Electrostatic Persistence Length of a Polyelectrolyte Chain. Macromolecules, 1995, 28, 577-581.	4.8	91
76	Magnesium-dependent folding of self-splicing RNA: Exploring the link between cooperativity, thermodynamics, and kinetics. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6149-6154.	7.1	91
77	Forced-Unfolding and Force-Quench Refolding of RNA Hairpins. Biophysical Journal, 2006, 90, 3410-3427.	0.5	91
78	Thermal denaturation and folding rates of single domain proteins: size matters. Polymer, 2004, 45, 573-579.	3.8	89
79	How accurate are polymer models in the analysis of \tilde{FAq} rster resonance energy transfer experiments on proteins?. Journal of Chemical Physics, 2009, 130, 124903.	3.0	89
80	Kinetic partitioning mechanism as a unifying theme in the folding of biomolecules. Theoretical Chemistry Accounts, 1997, 96, 14-22.	1.4	87
81	Metal Ion Dependence of Cooperative Collapse Transitions in RNA. Journal of Molecular Biology, 2009, 393, 753-764.	4.2	86
82	Crowding Promotes the Switch from Hairpin to Pseudoknot Conformation in Human Telomerase RNA. Journal of the American Chemical Society, 2011, 133, 11858-11861.	13.7	86
83	Nanopore–Protein Interactions Dramatically Alter Stability and Yield of the Native State in Restricted Spaces. Journal of Molecular Biology, 2006, 357, 632-643.	4.2	85
84	Collapse kinetics and chevron plots from simulations of denaturant-dependent folding of globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7787-7792.	7.1	85
85	Hidden complexity in the isomerization dynamics of Holliday junctions. Nature Chemistry, 2012, 4, 907-914.	13.6	85
86	Effects of pH on Proteins: Predictions for Ensemble and Single-Molecule Pulling Experiments. Journal of the American Chemical Society, 2012, 134, 979-987.	13.7	85
87	Determination of network of residues that regulate allostery in protein families using sequence analysis. Protein Science, 2006, 15, 258-268.	7.6	84
88	Multiple protein folding nuclei and the transition state ensemble in two-state proteins. Proteins: Structure, Function and Bioinformatics, 2001, 43, 465-475.	2.6	83
89	Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments. Journal of Physics Condensed Matter, 2007, 19, 113101.	1.8	83
90	Mechanical Unfolding of RNA: From Hairpins to Structures with Internal Multiloops. Biophysical Journal, 2007, 92, 731-743.	0.5	83

#	Article	IF	CITATIONS
91	Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21459-21464.	7.1	82
92	Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chemical Reviews, 2019, 119, 6788-6821.	47.7	82
93	Modeling the role of disulfide bonds in protein folding: Entropic barriers and pathways. Proteins: Structure, Function and Bioinformatics, 1995, 22, 27-40.	2.6	80
94	Relative Stability of Helices Determines the Folding Landscape of Adenine Riboswitch Aptamers. Journal of the American Chemical Society, 2008, 130, 14080-14081.	13.7	80
95	From mechanical folding trajectories to intrinsic energy landscapes of biopolymers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4500-4505.	7.1	80
96	Transmembrane Structures of Amyloid Precursor Protein Dimer Predicted by Replica-Exchange Molecular Dynamics Simulations. Journal of the American Chemical Society, 2009, 131, 3438-3439.	13.7	79
97	Linking rates of folding in lattice models of proteins with underlying thermodynamic characteristics. Journal of Chemical Physics, 1998, 109, 4119-4125.	3.0	78
98	Static properties of polymer chains in porous media. Journal of Chemical Physics, 1989, 90, 4542-4559.	3.0	77
99	Allostery Wiring Diagrams in the Transitions that Drive the GroEL Reaction Cycle. Journal of Molecular Biology, 2009, 387, 390-406.	4.2	77
100	Caging helps proteins fold. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11195-11197.	7.1	75
101	Force-dependent hopping rates of RNA hairpins can be estimated from accurate measurement of the folding landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9604-9609.	7.1	74
102	Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5281-7.	7.1	74
103	Multiple Probes are Required to Explore and Control the Rugged Energy Landscape of RNA Hairpins. Journal of the American Chemical Society, 2008, 130, 1538-1539.	13.7	73
104	Dissecting the Kinematics of the Kinesin Step. Structure, 2012, 20, 628-640.	3.3	73
105	Structures and Free-Energy Landscapes of the Wild Type and Mutants of the Aβ21–30 Peptide Are Determined by an Interplay between Intrapeptide Electrostatic and Hydrophobic Interactions. Journal of Molecular Biology, 2008, 379, 815-829.	4.2	71
106	Denaturant-dependent folding of GFP. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17832-17838.	7.1	71
107	Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci. PLoS Computational Biology, 2018, 14, e1006617.	3.2	71
108	Mean-field Potts glass model: Initial-condition effects on dynamics and properties of metastable states. Physical Review B, 1988, 38, 4881-4892.	3.2	70

#	Article	IF	CITATIONS
109	Semiflexible chains under tension. Journal of Chemical Physics, 1997, 106, 4243-4247.	3.0	70
110	Allosteric Communication in Dihydrofolate Reductase: Signaling Network and Pathways for Closed to Occluded Transition and Back. Journal of Molecular Biology, 2007, 374, 250-266.	4.2	69
111	Charge states rather than propensity for \hat{l}^2 -structure determine enhanced fibrillogenesis in wild-type Alzheimer's \hat{l}^2 -amyloid peptide compared to E22Q Dutch mutant. Protein Science, 2009, 11, 1639-1647.	7.6	69
112	Confinement-Induced Glassy Dynamics in a Model for Chromosome Organization. Physical Review Letters, 2015, 115, 198102.	7.8	69
113	RNA Tertiary Interactions Mediate Native Collapse of a Bacterial Group I Ribozyme. Journal of Molecular Biology, 2005, 353, 1199-1209.	4.2	66
114	A meanâ€field model for semiflexible chains. Journal of Chemical Physics, 1995, 103, 9408-9412.	3.0	63
115	Time Scales for the Formation of the Most Probable Tertiary Contacts in Proteins with Applications to Cytochrome c. Journal of Physical Chemistry B, 1999, 103, 608-610.	2.6	61
116	Kinetics of interior loop formation in semiflexible chains. Journal of Chemical Physics, 2006, 124, 104905.	3.0	61
117	Promoter melting triggered by bacterial RNA polymerase occurs in three steps. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12523-12528.	7.1	61
118	Extracting Stacking Interaction Parameters for RNA from the Data Set of Native Structures. Journal of Molecular Biology, 2005, 347, 53-69.	4.2	60
119	Rigor to Post-Rigor Transition in Myosin V: Link between the Dynamics and the Supporting Architecture. Structure, 2010, 18, 471-481.	3.3	60
120	Theoretical perspectives on biological machines. Reviews of Modern Physics, 2020, 92, .	45.6	60
121	Counterion Charge Density Determines the Position and Plasticity of RNA Folding Transition States. Journal of Molecular Biology, 2006, 359, 446-454.	4.2	59
122	Force-dependent switch in protein unfolding pathways and transition-state movements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E715-24.	7.1	59
123	Free polymer in a colloidal solution. Physical Review A, 1991, 44, R4797-R4800.	2.5	57
124	Virtual atom representation of hydrogen bonds in minimal off-lattice models of \hat{l}_{\pm} helices: effect on stability, cooperativity and kinetics. Folding & Design, 1998, 3, 481-496.	4.5	57
125	Molecular Origin of Constant <i>m</i> Values, Denatured State Collapse, and Residue-Dependent Transition Midpoints in Globular Proteins. Biochemistry, 2009, 48, 3743-3754.	2.5	56
126	Conformations of a polyelectrolyte chain. Physical Review A, 1992, 46, R3012-R3015.	2.5	55

#	Article	IF	CITATIONS
127	Propensity to Form Amyloid Fibrils Is Encoded as Excitations in the Free Energy Landscape of Monomeric Proteins. Journal of Molecular Biology, 2014, 426, 2653-2666.	4.2	55
128	Theory and simulations for RNA folding in mixtures of monovalent and divalent cations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21022-21030.	7.1	55
129	Order-disorder transition in colloidal suspensions. Physical Review A, 1987, 36, 5690-5700.	2.5	54
130	Are disordered spin glass models relevant for the structural glass problem?. Transport Theory and Statistical Physics, 1995, 24, 927-945.	0.4	54
131	Charge fluctuation effects on the shape of flexible polyampholytes with applications to intrinsically disordered proteins. Journal of Chemical Physics, 2018, 149, 163323.	3.0	54
132	Finite Size Effects on Thermal Denaturation of Globular Proteins. Physical Review Letters, 2004, 93, 268107.	7.8	53
133	Native secondary structure formation in RNA may be a slave to tertiary folding. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11506-11508.	7.1	52
134	Protein folding: from theory to practice. Current Opinion in Structural Biology, 2013, 23, 22-29.	5.7	52
135	Molecular-dynamics study of glassy and supercooled states of a binary mixture of soft spheres. Physical Review A, 1987, 36, 3300-3311.	2.5	50
136	Persistence length of flexible polyelectrolyte chains. Journal of Chemical Physics, 1999, 110, 7533-7541.	3.0	50
137	Symmetric Connectivity of Secondary Structure Elements Enhances the Diversity of Folding Pathways. Journal of Molecular Biology, 2005, 353, 1171-1186.	4.2	50
138	Phenomenological and microscopic theories for catch bonds. Journal of Structural Biology, 2017, 197, 50-56.	2.8	50
139	Differences in the free energies between the excited states of A $\langle i \rangle \hat{l}^2 \langle i \rangle$ 40 and A $\langle i \rangle \hat{l}^2 \langle i \rangle$ 42 monomers encode their aggregation propensities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19926-19937.	7.1	49
140	Interactions between amino acid side chains in cylindrical hydrophobic nanopores with applications to peptide stability. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17636-17641.	7.1	47
141	Coupling between Normal Modes Drives Protein Conformational Dynamics: Illustrations Using Allosteric Transitions in Myosin II. Biophysical Journal, 2009, 96, 2128-2137.	0.5	47
142	Folding of Human Telomerase RNA Pseudoknot Using Ion-Jump and Temperature-Quench Simulations. Journal of the American Chemical Society, 2011, 133, 20634-20643.	13.7	47
143	Chain Length Determines the Folding Rates of RNA. Biophysical Journal, 2012, 102, L11-L13.	0.5	47
144	Maximizing RNA folding rates: A balancing act. Rna, 2000, 6, 790-794.	3.5	46

#	Article	IF	CITATIONS
145	Theory of the Molecular Transfer Model for Proteins with Applications to the Folding of the src-SH3 Domain. Journal of Physical Chemistry B, 2012, 116, 6707-6716.	2.6	46
146	Design principles governing the motility of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4059-E4068.	7.1	46
147	Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9048-9053.	7.1	46
148	Sequence-Dependent Three Interaction Site Model for Single- and Double-Stranded DNA. Journal of Chemical Theory and Computation, 2018, 14, 3763-3779.	5.3	46
149	Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model. Journal of Physical Chemistry B, 2015, 119, 11358-11370.	2.6	45
150	Internal Constraints Induce Localization in an Isolated Polymer Molecule. Physical Review Letters, 1996, 76, 542-545.	7.8	43
151	Allosteric Transitions in Biological Nanomachines are Described by Robust Normal Modes of Elastic Networks. Current Protein and Peptide Science, 2009, 10, 128-132.	1.4	43
152	Ultrasensitivity of Water Exchange Kinetics to the Size of Metal Ion. Journal of the American Chemical Society, 2017, 139, 12334-12337.	13.7	43
153	Structural Heterogeneity in Transmembrane Amyloid Precursor Protein Homodimer Is a Consequence of Environmental Selection. Journal of the American Chemical Society, 2014, 136, 9619-9626.	13.7	40
154	Stretching Homopolymers. Macromolecules, 2007, 40, 7343-7353.	4.8	39
155	Factors Governing Helix Formation in Peptides Confined to Carbon Nanotubes. Nano Letters, 2008, 8, 3702-3708.	9.1	38
156	Minimal Models for Proteins and RNA: From Folding to Function. Progress in Molecular Biology and Translational Science, 2008, 84, 203-250.	1.7	38
157	Structure of APP-C991–99 and implications for role of extra-membrane domains in function and oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1698-1708.	2.6	38
158	Spatially heterogeneous dynamics of cells in a growing tumor spheroid: comparison between theory and experiments. Soft Matter, 2020, 16, 5294-5304.	2.7	38
159	Collapse Precedes Folding in Denaturant-Dependent Assembly of Ubiquitin. Journal of Physical Chemistry B, 2017, 121, 995-1009.	2.6	37
160	Liquid and crystalline states of monodisperse charged colloidal particles. The Journal of Physical Chemistry, 1989, 93, 5637-5644.	2.9	36
161	Molecular chaperones maximize the native state yield on biological times by driving substrates out of equilibrium. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10919-E10927.	7.1	36
162	Theory of Biopolymer Stretching at High Forces. Macromolecules, 2010, 43, 4394-4400.	4.8	35

#	Article	IF	Citations
163	Unexpected Swelling of Stiff DNA in a Polydisperse Crowded Environment. Journal of the American Chemical Society, 2015, 137, 10970-10978.	13.7	35
164	Annealing function of GroEL: structural and bioinformatic analysis. Biophysical Chemistry, 2002, 100, 453-467.	2.8	34
165	Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4433-4438.	7.1	34
166	Mechanical heterogeneity along single cell-cell junctions is driven by lateral clustering of cadherins during vertebrate axis elongation. ELife, $2021,10,10$	6.0	34
167	Bending Rigidity of Stiff Polyelectrolyte Chains:Â A Single Chain and a Bundle of Multichains. Macromolecules, 2003, 36, 9658-9666.	4.8	33
168	Compaction and Tensile Forces Determine the Accuracy of Folding Landscape Parameters from Single Molecule Pulling Experiments. Physical Review Letters, 2011, 106, 138102.	7.8	33
169	On the origin of the unusual behavior in the stretching of single-stranded DNA. Journal of Chemical Physics, 2012, 136, 235103.	3.0	33
170	Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9838-E9845.	7.1	33
171	Cell Growth Rate Dictates the Onset of Glass to Fluidlike Transition and Long Time Superdiffusion in an Evolving Cell Colony. Physical Review X, 2018, 8, .	8.9	33
172	Crowding Effects on the Structural Transitions in a Flexible Helical Homopolymer. Physical Review Letters, 2009, 102, 118101.	7.8	32
173	On the accuracy of inferring energetic coupling between distant sites in protein families from evolutionary imprints: Illustrations using lattice model. Proteins: Structure, Function and Bioinformatics, 2009, 77, 823-831.	2.6	32
174	Directly measuring single-molecule heterogeneity using force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3852-61.	7.1	32
175	Ion Condensation onto Ribozyme Is Site Specific and Fold Dependent. Biophysical Journal, 2019, 116, 2400-2410.	0.5	32
176	Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Science, 2020, 29, 360-377.	7.6	32
177	Effect of elongational flow on the isotropic–nematic phase transition in rodâ€like systems. Journal of Chemical Physics, 1986, 84, 5869-5873.	3.0	31
178	Liquid, crystalline and glassy states of binary charged colloidal suspensions. Journal of Physics Condensed Matter, 1989, 1, 2109-2114.	1.8	31
179	Universal Nature of Collapsibility in the Context of Protein Folding and Evolution. Trends in Biochemical Sciences, 2019, 44, 675-687.	7.5	31
180	Molecular Simulations of Ion Effects on the Thermodynamics of RNA Folding. Journal of Physical Chemistry B, 2018, 122, 11860-11867.	2.6	30

#	Article	IF	Citations
181	Kinetic Model for the Coupling between Allosteric Transitions in GroEL and Substrate Protein Folding and Aggregation. Journal of Molecular Biology, 2008, 377, 1279-1295.	4.2	28
182	Protein collapse is encoded in the folded state architecture. Soft Matter, 2017, 13, 3622-3638.	2.7	28
183	Structure and dynamics of screened-Coulomb colloidal liquids. Physical Review A, 1986, 33, 4473-4476.	2.5	27
184	Crowding Effects on the Mechanical Stability and Unfolding Pathways of Ubiquitin. Journal of Physical Chemistry B, 2009, 113, 359-368.	2.6	27
185	Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension. Journal of Molecular Biology, 2016, 428, 2847-2859.	4.2	27
186	Conformational heterogeneity in human interphase chromosome organization reconciles the FISH and Hi-C paradox. Nature Communications, 2019, 10, 3894.	12.8	27
187	Lattice Model Studies of Force-Induced Unfolding of Proteinsâ€. Journal of Physical Chemistry B, 2001, 105, 6648-6654.	2.6	26
188	Evidence of Disorder in Biological Molecules from Single Molecule Pulling Experiments. Physical Review Letters, 2014, 112, 138101.	7.8	26
189	Fractal analysis of protein potential energy landscapes. Physical Review E, 1999, 59, 2231-2243.	2.1	25
190	Membrane–Protein Interactions Are Key to Understanding Amyloid Formation. Journal of Physical Chemistry Letters, 2014, 5, 633-635.	4.6	25
191	Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force. Physical Review Letters, 2016, 117, 078101.	7.8	25
192	Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
193	Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics. Nature Chemistry, 2022, 14, 775-785.	13.6	25
194	Probing the "Annealing―Mechanism of GroEL Minichaperone using Molecular Dynamics Simulations. Journal of Molecular Biology, 2005, 350, 817-829.	4.2	24
195	Multiple barriers in forced rupture of protein complexes. Journal of Chemical Physics, 2012, 137, 055103.	3.0	24
196	Entropic stabilization of the folded states of RNA due to macromolecular crowding. Biophysical Reviews, 2013, 5, 225-232.	3.2	24
197	Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7313-E7322.	7.1	24
198	Influence of optimal cavity shapes on the size of polymer molecules in random media. Journal of Chemical Physics, 1990, 93, 6851-6858.	3.0	23

#	Article	IF	CITATIONS
199	Proteins associated with diseases show enhanced sequence correlation between charged residues. Bioinformatics, 2004, 20, 2345-2354.	4.1	23
200	Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8575-8580.	7.1	23
201	Identifying natural substrates for chaperonins using a sequence-based approach. Protein Science, 2009, 14, 193-201.	7.6	22
202	Folding PDZ2 Domain Using the Molecular Transfer Model. Journal of Physical Chemistry B, 2016, 120, 8090-8101.	2.6	21
203	A FÃ \P rster Resonance Energy Transfer-Based Sensor of Steric Pressure on Membrane Surfaces. Journal of the American Chemical Society, 2020, 142, 20796-20805.	13.7	21
204	Helicase Processivity and Not the Unwinding Velocity Exhibits Universal Increase with Force. Biophysical Journal, 2015, 109, 220-230.	0.5	20
205	Theory and simulations of condensin mediated loop extrusion in DNA. Nature Communications, 2021, 12, 5865.	12.8	20
206	Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise. Physical Review X, 2014, 4, .	8.9	19
207	Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants. Journal of Physical Chemistry Letters, 2021, 12, 9026-9032.	4.6	19
208	The Asakura–Oosawa theory: Entropic forces in physics, biology, and soft matter. Journal of Chemical Physics, 2022, 156, 080401.	3.0	19
209	Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170182.	4.0	18
210	Share, but unequally: a plausible mechanism for emergence and maintenance of intratumour heterogeneity. Journal of the Royal Society Interface, 2019, 16, 20180820.	3.4	18
211	Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11359-11364.	7.1	17
212	Kinematics of the lever arm swing in myosin VI. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4389-E4398.	7.1	16
213	How kinesin waits for ATP affects the nucleotide and load dependence of the stepping kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23091-23099.	7.1	16
214	Variational theories for localized states of an excess electron in fluids. Journal of Chemical Physics, 1990, 93, 3460-3470.	3.0	15
215	Generalized iterative annealing model for the action of RNA chaperones. Journal of Chemical Physics, 2013, 139, 121924.	3.0	15
216	Noise Control in Gene Regulatory Networks with Negative Feedback. Journal of Physical Chemistry B, 2016, 120, 6166-6177.	2.6	15

#	Article	IF	Citations
217	Importance of Hydrodynamic Interactions in the Stepping Kinetics of Kinesin. Journal of Physical Chemistry B, 2016, 120, 2071-2075.	2.6	15
218	Charge Density of Cation Determines Inner versus Outer Shell Coordination to Phosphate in RNA. Journal of Physical Chemistry B, 2020, 124, 4114-4122.	2.6	15
219	A Kinetic Model for Chaperonin Assisted Folding of Proteins. Journal De Physique, I, 1997, 7, 553-560.	1.2	15
220	Dynamics of Allosteric Transitions in Dynein. Structure, 2018, 26, 1664-1677.e5.	3.3	14
221	Stretching DNA: Role of electrostatic interactions. European Physical Journal B, 1999, 12, 599-605.	1.5	13
222	Insights into Specific Problems in Protein Folding Using Simple Concepts. Advances in Chemical Physics, 2002, , 35-76.	0.3	12
223	Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores. Journal of Chemical Physics, 2009, 130, 094502.	3.0	12
224	From Hi-C Contact Map to Three-Dimensional Organization of Interphase Human Chromosomes. Physical Review X, 2021, 11, .	8.9	12
225	Self-generated persistent random forces drive phase separation in growing tumors. Journal of Chemical Physics, 2020, 153, 201101.	3.0	12
226	Path-integral Monte Carlo simulations of electron localization in water clusters. Journal of Statistical Physics, 1986, 43, 973-984.	1.2	11
227	Dynamical aspects of anisotropic correlations in supercooled liquids. Journal of Chemical Physics, 1990, 92, 6116-6123.	3.0	11
228	Adhesion strength between cells regulate nonmonotonic growth by a biomechanical feedback mechanism. Biophysical Journal, 2022, 121, 3719-3729.	0.5	11
229	Manifestation of random first-order transition theory in Wigner glasses. Physical Review E, 2013, 88, 042308.	2.1	10
230	Frictional Effects on RNA Folding: Speed Limit and Kramers Turnover. Journal of Physical Chemistry B, 2018, 122, 11279-11288.	2.6	10
231	Cooperativity and Folding Kinetics in a Multidomain Protein with Interwoven Chain Topology. ACS Central Science, 2022, 8, 763-774.	11.3	10
232	Intermediates and Transition States in Protein Folding., 2007, 350, 277-304.		9
233	Using Simulations and Kinetic Network Models to Reveal the Dynamics and Functions of Riboswitches. Methods in Enzymology, 2015, 553, 235-258.	1.0	9
234	Origin of superdiffusive behavior in a class of nonequilibrium systems. Physical Review E, 2019, 99, 032401.	2.1	9

#	Article	IF	Citations
235	A mathematical model for phenotypic heterogeneity in breast cancer with implications for therapeutic strategies. Journal of the Royal Society Interface, 2022, 19, 20210803.	3.4	9
236	Hydrophobic and Ionic-Interactions in Bulk and Confined Water with Implications for Collapse and Folding of Proteins. Journal of Statistical Physics, 2011, 145, 276-292.	1.2	8
237	Denaturants Alter the Flux through Multiple Pathways in the Folding of PDZ Domain. Journal of Physical Chemistry B, 2018, 122, 1408-1416.	2.6	8
238	Interface Residues That Drive Allosteric Transitions Also Control the Assembly of <scp>I</scp> -Lactate Dehydrogenase. Journal of Physical Chemistry B, 2018, 122, 11195-11205.	2.6	8
239	Molecular Transfer Model for pH Effects on Intrinsically Disordered Proteins: Theory and Applications. Journal of Chemical Theory and Computation, 2021, 17, 1944-1954.	5.3	8
240	Asymmetry in histone rotation in forced unwrapping and force quench rewrapping in a nucleosome. Nucleic Acids Research, 2021, 49, 4907-4918.	14.5	8
241	Step-Wise Hydration of Magnesium by Four Water Molecules Precedes Phosphate Release in a Myosin Motor. Journal of Physical Chemistry B, 2021, 125, 1107-1117.	2.6	8
242	Mechanical feedback controls the emergence of dynamical memory in growing tissue monolayers. Journal of Chemical Physics, 2022, 156, .	3.0	8
243	Random First-Order Phase Transition Theory of the Structural Glass Transition. , 2012, , 223-236.		7
244	Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states. Journal of Chemical Physics, 2018, 148, 123332.	3.0	7
245	Cooperation among Tumor Cell Subpopulations Leads to Intratumor Heterogeneity. Biophysical Reviews and Letters, 2020, 15, 99-119.	0.8	7
246	Myosin V executes steps of variable length via structurally constrained diffusion. ELife, 2020, 9 , .	6.0	7
247	Optimal information transfer in enzymatic networks: A field theoretic formulation. Physical Review E, 2017, 96, 012406.	2.1	6
248	Processivity, Velocity, and Universal Characteristics of Nucleic Acid Unwinding by Helicases. Biophysical Journal, 2019, 117, 867-879.	0.5	6
249	Processivity and Velocity for Motors Stepping onÂPeriodic Tracks. Biophysical Journal, 2020, 118, 1537-1551.	0.5	6
250	Energy Landscape of Ubiquitin Is Weakly Multidimensional. Journal of Physical Chemistry B, 2021, 125, 8682-8689.	2.6	6
251	Development and Applications of Coarseâ€Grained Models for RNA. Israel Journal of Chemistry, 2014, 54, 1358-1373.	2.3	5
252	On the Emergence of Orientational Order in Folded Proteins with Implications for Allostery. Symmetry, 2021, 13, 770.	2.2	5

#	Article	IF	CITATIONS
253	Random First Order Transition Theory for Glassy Dynamics in a Single Condensed Polymer. Physical Review Letters, 2021, 126, 137801.	7.8	5
254	Myosin VI: How Do Charged Tails Exert Control?. Structure, 2010, 18, 1393-1394.	3.3	4
255	Entropy and enthalpy of interaction between amino acid side chains in nanopores. Journal of Chemical Physics, 2014, 141, 22D523.	3.0	4
256	Dramatic Shape Changes Occur as Cytochrome <i>c</i> Folds. Journal of Physical Chemistry B, 2020, 124, 8240-8248.	2.6	4
257	Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses. Physical Review E, 2020, 101, 032605.	2.1	4
258	Retardation of Folding Rates of Substrate Proteins in the Nanocage of GroEL. Biochemistry, 2021, 60, 460-464.	2.5	4
259	Low Force Unfolding of a Single-Domain Protein by Parallel Pathways. Journal of Physical Chemistry B, 2021, 125, 1799-1805.	2.6	4
260	Effects of Gold Nanoparticles on the Stepping Trajectories of Kinesin. Journal of Physical Chemistry B, 2021, 125, 10432-10444.	2.6	4
261	Role of water-bridged interactions in metal ion coupled protein allostery. PLoS Computational Biology, 2022, 18, e1010195.	3.2	4
262	Response to   Comment on a proposed method for finding barrier height distributions'' [J. Chem. Phy 103, 1235 (1995)]. Journal of Chemical Physics, 1995, 103, 1237-1238.	/\$.3.0	3
263	Probing the role of local propensity in peptide turn formation. International Journal of Quantum Chemistry, 2000, 80, 1125-1128.	2.0	3
264	Thermodynamics of Helix–Coil Transitions of Polyalanine in Open Carbon Nanotubes. Journal of Physical Chemistry Letters, 2017, 8, 494-499.	4.6	3
265	Multiscale Coarse-Grained Model for the Stepping of Molecular Motors with Application to Kinesin. Journal of Chemical Theory and Computation, 2021, 17, 5358-5368.	5.3	3
266	Plus and minus ends of microtubules respond asymmetrically to kinesin binding by a long-range directionally driven allosteric mechanism. Science Advances, 2022, 8, eabn0856.	10.3	3
267	Ripping RNA by Force Using Gaussian Network Models. Journal of Physical Chemistry B, 2017, 121, 3515-3522.	2.6	2
268	Temperature and Guanidine Hydrochloride Effects on the Folding Thermodynamics of WW Domain and Variants. Journal of Physical Chemistry B, 2021, 125, 11386-11391.	2.6	2
269	Flow induced transitions in smectic liquid crystals. Journal of Chemical Physics, 1987, 86, 4548-4554.	3.0	1
270	Emergence of stable and fast folding protein structures. AIP Conference Proceedings, 2000, , .	0.4	1

#	Article	IF	Citations
271	Chromatin Is Stretched but Intact When the Nucleus Is Squeezed through Constrictions. Biophysical Journal, 2017, 112, 411-412.	0.5	1
272	Giant Casimir Nonequilibrium Forces Drive Coil to Globule Transition in Polymers. Journal of Physical Chemistry Letters, 2019, 10, 2788-2793.	4.6	1
273	Water-Mediated Interactions Determine Helix Formation of Peptides in Open Nanotubes. Journal of Physical Chemistry B, 2021, 125, 817-824.	2.6	1
274	Reply to Alberti: Are in vitro folding experiments relevant in vivo?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3192-E3192.	7.1	0
275	Theory and computations in biology: Kamal's legacy. Physical Biology, 2017, 14, 010401.	1.8	0
276	Cooperation Among Tumor Cell Subpopulations Leads to Intratumor Heterogeneity., 2020,, 79-99.		0
277	Autobiography of Dave Thirumalai. Journal of Physical Chemistry B, 2021, 125, 13834-13839.	2.6	0