Sanjeet Mehariya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8043522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresource Technology, 2018, 265, 519-531.	9.6	235
2	Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresource Technology, 2018, 249, 1025-1039.	9.6	232
3	Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. Science of the Total Environment, 2021, 751, 141599.	8.0	177
4	Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. International Journal of Environmental Research and Public Health, 2018, 15, 2436.	2.6	155
5	Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. Journal of CO2 Utilization, 2020, 36, 196-209.	6.8	145
6	Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 2021, 280, 130553.	8.2	144
7	Microalgae-based biorefineries for sustainable resource recovery from wastewater. Journal of Water Process Engineering, 2021, 40, 101747.	5.6	143
8	Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of Biotechnology, 2018, 283, 51-61.	3.8	126
9	Extraction of Astaxanthin and Lutein from Microalga Haematococcus pluvialis in the Red Phase Using CO2 Supercritical Fluid Extraction Technology with Ethanol as Co-Solvent. Marine Drugs, 2018, 16, 432.	4.6	105
10	Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Marine Drugs, 2018, 16, 334.	4.6	103
11	Multi-Organ Involvement in COVID-19: Beyond Pulmonary Manifestations. Journal of Clinical Medicine, 2021, 10, 446.	2.4	102
12	Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. International Journal of Hydrogen Energy, 2014, 39, 14663-14668.	7.1	97
13	Advanced microalgae-based renewable biohydrogen production systems: A review. Bioresource Technology, 2021, 320, 124301.	9.6	92
14	Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies, 2021, 14, 2282.	3.1	91
15	Ecobiotechnological Approach for Exploiting the Abilities of Bacillus to Produce Co-polymer of Polyhydroxyalkanoate. Indian Journal of Microbiology, 2014, 54, 151-157.	2.7	88
16	Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresource Technology, 2015, 182, 383-388.	9.6	79
17	Biodiesel Industry Waste: A Potential Source of Bioenergy and Biopolymers. Indian Journal of Microbiology, 2015, 55, 1-7.	2.7	76
18	Ecobiotechnological Strategy to Enhance Efficiency of Bioconversion of Wastes into Hydrogen and Methane. Indian Journal of Microbiology, 2014, 54, 262-267.	2.7	64

SANJEET MEHARIYA

#	Article	IF	CITATIONS
19	Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. Journal of Environmental Chemical Engineering, 2021, 9, 105989.	6.7	59
20	Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules, 2021, 26, 1142.	3.8	58
21	Apple orchard waste recycling and valorization of valuable product-A review. Bioengineered, 2021, 12, 476-495.	3.2	55
22	Enhancing Biomass and Lutein Production From Scenedesmus almeriensis: Effect of Carbon Dioxide Concentration and Culture Medium Reuse. Frontiers in Plant Science, 2020, 11, 415.	3.6	52
23	Bench-Scale Cultivation of Microalgae Scenedesmus almeriensis for CO2 Capture and Lutein Production. Energies, 2019, 12, 2806.	3.1	50
24	Supercritical Fluid Extraction of Lutein from Scenedesmus almeriensis. Molecules, 2019, 24, 1324.	3.8	49
25	Selective Extraction of Ï‱-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction. Molecules, 2019, 24, 2406.	3.8	44
26	Production of Methanol from Methane by Encapsulated Methylosinus sporium. Journal of Microbiology and Biotechnology, 2016, 26, 2098-2105.	2.1	38
27	Eicosapentaenoic Acid Extraction from Nannochloropsis gaditana using Carbon Dioxide at Supercritical Conditions. Marine Drugs, 2019, 17, 132.	4.6	33
28	Food waste treatment by anaerobic co-digestion with saline sludge and its implications for energy recovery in Hong Kong. Bioresource Technology, 2018, 268, 824-828.	9.6	32
29	Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: an emerging and foreseeable sustainable approach. Environmental Science and Pollution Research, 2022, 29, 61905-61937.	5.3	32
30	Multifaceted application of microalgal biomass integrated with carbon dioxide reduction and wastewater remediation: A flexible concept for sustainable environment. Journal of Cleaner Production, 2022, 339, 130654.	9.3	32
31	Microalgae-Based Biorefinery for Utilization of Carbon Dioxide for Production of Valuable Bioproducts. , 2020, , 203-228.		28
32	Bio-refining of food waste for fuel and value products. Energy Procedia, 2017, 136, 14-21.	1.8	27
33	Biofuel Production and Phosphorus Recovery through an Integrated Treatment of Agro-Industrial Waste. Sustainability, 2019, 11, 52.	3.2	26
34	Smart Method for Carotenoids Characterization in Haematococcus pluvialis Red Phase and Evaluation of Astaxanthin Thermal Stability. Antioxidants, 2020, 9, 422.	5.1	26
35	Polyhydroxyalkanoates from extremophiles: A review. Bioresource Technology, 2021, 325, 124653.	9.6	26
36	A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules, 2021, 11, 1860.	4.0	22

SANJEET MEHARIYA

#	Article	IF	CITATIONS
37	Exploiting Microbes in the Petroleum Field: Analyzing the Credibility of Microbial Enhanced Oil Recovery (MEOR). Energies, 2021, 14, 4684.	3.1	19
38	Influence of Carbon Sources on Biomass and Biomolecule Accumulation in Picochlorum sp. Cultured under the Mixotrophic Condition. International Journal of Environmental Research and Public Health, 2022, 19, 3674.	2.6	19
39	An overview on microalgal-bacterial granular consortia for resource recovery and wastewater treatment. Bioresource Technology, 2022, 351, 127028.	9.6	18
40	An Integrated Strategy for Nutraceuticals from Haematoccus pluvialis: From Cultivation to Extraction. Antioxidants, 2020, 9, 825.	5.1	17
41	Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment. Bioprocess and Biosystems Engineering, 2021, 44, 355-368.	3.4	14
42	Established and Emerging Producers of PHA: Redefining the Possibility. Applied Biochemistry and Biotechnology, 2021, 193, 3812-3854.	2.9	12
43	Biotechnology in Aid of Biodiesel Industry Effluent (Glycerol): Biofuels and Bioplastics. , 2015, , 105-119.		10
44	Fischer–Tropsch synthesis of syngas to liquid hydrocarbons. , 2020, , 217-248.		9
45	Improving the content of high value compounds in Nordic Desmodesmus microalgal strains. Bioresource Technology, 2022, 359, 127445.	9.6	9
46	Overview of extraction of astaxanthin from Haematococcus pluvialis using CO2 supercritical fluid extraction technology vis-a-vis quality demands. , 2021, , 341-354.		7
47	Bio-based and agriculture resources for production of bioproducts. , 2020, , 263-282.		6
48	Aquatic Weeds: A Potential Pollutant Removing Agent from Wastewater and Polluted Soil and Valuable Biofuel Feedstock. Energy, Environment, and Sustainability, 2021, , 59-77.	1.0	1
49	Biorefinery for Agro-Industrial Waste Into Value-Added Biopolymers: Production and Applications. Clean Energy Production Technologies, 2020, , 1-19.	0.5	1
50	Environmental Friendly Technologies for Remediation of Toxic Heavy Metals: Pragmatic Approaches for Environmental Management. , 2022, , 199-223.		1
51	Electro-digestion of food waste and chemically enhanced primary treated sludge. Bioresource Technology Reports, 2022, 18, 101020.	2.7	0