List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8043311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switchable solvents for bio-refinery applications. , 2022, , 1-20.		0
2	Potential Antiviral Action of Alkaloids. Molecules, 2022, 27, 903.	3.8	29
3	Synthesis, solid state self-assembly driven by antiparallel ï€â<ï€ stacking and {â<ïH–C–C–F} ₂ dimer synthons, and <i>in vitro</i> acetyl cholinesterase inhibition activity of phenoxy pendant isatins. RSC Advances, 2022, 12, 1788-1796.	3.6	6
4	Bio-composites from spent hen derived lipids grafted on CNC and reinforced with nanoclay. Carbohydrate Polymers, 2022, 281, 119082.	10.2	7
5	Depolymerization of lignin into high-value products. Biocatalysis and Agricultural Biotechnology, 2022, 40, 102306.	3.1	6
6	Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers, 2022, 14, 1146.	4.5	19
7	Current progress in lipid-based biofuels: Feedstocks and production technologies. Bioresource Technology, 2022, 351, 127020.	9.6	23
8	Influence of End-Capped Modifications in the Nonlinear Optical Amplitude of Nonfullerene-Based Chromophores with a Dâʾʾπ–A Architecture: A DFT/TDDFT Study. ACS Omega, 2022, 7, 23532-23548.	3.5	15
9	Bionanocomposites from spent hen proteins reinforced with polyhedral oligomeric silsesquioxane (POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, , 102434.	3.1	0
10	Degradation of Deoxynivalenol by Atmospheric-Pressure Cold Plasma and Sequential Treatments with Heat and UV Light. Food Engineering Reviews, 2021, 13, 696-705.	5.9	16
11	Biopolymers. , 2021, , 281-303.		11
12	Feather keratin derived sorbents for the treatment of wastewater produced during energy generation processes. Chemosphere, 2021, 273, 128545.	8.2	22
13	Nanocellulose: A sustainable and renewable material for water and wastewater treatment. , 2021, , 93-109.		4
14	Biopolymers in environmental applications. , 2021, , 331-349.		14
15	Recent Advances in Lipid Derived Bioâ€Based Materials for Food Packaging Applications. Macromolecular Materials and Engineering, 2021, 306, 2000799.	3.6	29
16	Rapid, Metal-Free, Catalytic Conversion of Glycerol to Allyl Monomers and Polymers. ACS Sustainable Chemistry and Engineering, 2021, 9, 9474-9485.	6.7	10
17	Recent advances in protein derived bionanocomposites for food packaging applications. Critical Reviews in Food Science and Nutrition, 2020, 60, 406-434.	10.3	143
18	Effects of Ultrasoundâ€Assisted Alkaline Extraction on Antioxidant Activity and Functional Characteristics of Chicken Feather Keratin Peptides. ChemistrySelect, 2020, 5, 13788-13794.	1.5	10

#	Article	IF	CITATIONS
19	Chitosan-based materials for water and wastewater treatment. , 2020, , 773-809.		15
20	Facile fabrication of graphene oxide/poly(styrene-co-methyl methacrylate) nanocomposite with high toughness and thermal stability. Materials Today Communications, 2020, 25, 101633.	1.9	3
21	Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer. ACS Applied Materials & Interfaces, 2020, 12, 51927-51939.	8.0	41
22	Synthesis and Characterization of Unsaturated Biobased-Polyamides from Plant Oil. ACS Sustainable Chemistry and Engineering, 2020, 8, 8049-8058.	6.7	13
23	Concurrent Modelling and Experimental Investigation of Material Properties and Geometries Produced by Projection Microstereolithography. Polymers, 2020, 12, 506.	4.5	16
24	Lipid-derived renewable amphiphilic nanocarriers for drug delivery, biopolymer-based formulations. , 2020, , 283-310.		4
25	Lipid-derived hybrid bionanocomposites from spent hens. Materials Today Communications, 2020, 25, 101327.	1.9	7
26	Miscibility, properties, and biodegradability of chitin and chitosan. , 2020, , 377-399.		1
27	Polymers for advanced applications. , 2020, , 325-340.		5
28	Metal oxide powder technologies in catalysis. , 2020, , 279-297.		4
29	Solvent-free rapid ethenolysis of fatty esters from spent hen and other lipidic feedstock with high turnover numbers. Journal of Industrial and Engineering Chemistry, 2020, 84, 42-45.	5.8	12
30	Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. International Journal of Biological Macromolecules, 2020, 148, 449-456.	7.5	52
31	Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment. Food Engineering Reviews, 2020, 12, 268-289.	5.9	54
32	Chemical Modification of Lignin by Polymerization and Depolymerization. Springer Series on Polymer and Composite Materials, 2020, , 139-180.	0.7	5
33	Chitosan/chitin-based composites for food packaging applications. , 2020, , 641-670.		8
34	An Overview of the World Current and Future Assessment of Novel COVID-19 Trajectory, Impact, and Potential Preventive Strategies at Healthcare Settings. International Journal of Environmental Research and Public Health, 2020, 17, 7016.	2.6	7
35	Unravelled keratin-derived biopolymers as novel biosorbents for the simultaneous removal of multiple trace metals from industrial wastewater. Science of the Total Environment, 2019, 647, 1539-1546.	8.0	54
36	Supercritical CO2 extraction and solvent-free rapid alternative bioepoxy production from spent hens. Journal of CO2 Utilization, 2019, 34, 335-342.	6.8	5

#	Article	IF	CITATIONS
37	Additive manufacturing ferromagnetic polymers using stereolithography – Materials and process development. Manufacturing Letters, 2019, 21, 12-16.	2.2	18
38	Keratin and Chitosan Biosorbents for Wastewater Treatment: A Review. Journal of Polymers and the Environment, 2019, 27, 1389-1403.	5.0	52
39	Hybrid Bionanocomposites from Spent Hen Proteins. ACS Omega, 2019, 4, 3772-3781.	3.5	22
40	Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. International Journal of Biological Macromolecules, 2019, 121, 1086-1100.	7.5	183
41	Keratin as a Biopolymer. Springer Series on Polymer and Composite Materials, 2019, , 163-185.	0.7	14
42	Extraction, optimization, and characterization of lipids from spent hens: An unexploited sustainable bioresource. Journal of Cleaner Production, 2019, 206, 622-630.	9.3	13
43	In-Situ Nanoreinforced Green Bionanomaterials from Natural Keratin and Montmorillonite (MMT)/Cellulose Nanocrystals (CNC). ACS Sustainable Chemistry and Engineering, 2018, 6, 1977-1987.	6.7	61
44	Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Materials Science and Engineering C, 2018, 90, 446-453.	7.3	56
45	Molecular mechanism and characterization of self-assembly of feather keratin gelation. International Journal of Biological Macromolecules, 2018, 107, 290-296.	7.5	30
46	Mechanistic insight into protein supported biosorption complemented by kinetic and thermodynamics perspectives. Advances in Colloid and Interface Science, 2018, 261, 28-40.	14.7	20
47	Preparation and characterization of graphite oxide nanoâ€reinforced biocomposites from chicken feather keratin. Journal of Chemical Technology and Biotechnology, 2017, 92, 2023-2031.	3.2	25
48	Potassium-doped mesoporous bioactive glass: Synthesis, characterization and evaluation of biomedical properties. Materials Science and Engineering C, 2017, 75, 836-844.	7.3	27
49	Remarkably Efficient Microwaveâ€Assisted Crossâ€Metathesis of Lipids under Solventâ€Free Conditions. ChemSusChem, 2017, 10, 2167-2174.	6.8	20
50	Microwave-assisted rapid synthesis of a polyether from a plant oil derived monomer and its optimization by Box–Behnken design. RSC Advances, 2017, 7, 27946-27959.	3.6	6
51	Synthesis of lipid-based amphiphilic block copolymer and its evaluation as nano drug carrier. Materials Science and Engineering C, 2017, 76, 217-223.	7.3	18
52	Rapid copolymerization of canola oil derived epoxide monomers with anhydrides and carbon dioxide (CO ₂). Polymer Chemistry, 2017, 8, 6431-6442.	3.9	6
53	Synthesis of Fully Biobased Polyesters from Plant Oil. ACS Sustainable Chemistry and Engineering, 2017, 5, 9793-9801.	6.7	14
54	Preparation and characterization of thermally crosslinked poly(vinyl alcohol)/feather keratin nanofiber scaffolds. Materials and Design, 2017, 133, 1-9.	7.0	83

#	Article	IF	CITATIONS
55	Synthesis, crystal structure, experimental and theoretical investigations of 3-(4-ethoxy-3-methoxyphenyl)-1-phenylprop-2-en-1-one. Journal of Molecular Structure, 2017, 1127, 742-750.	3.6	8
56	Microwave-Assisted Catalytic Synthesis of Bio-Based Copolymers from Waste Cooking Oil. Materials, 2017, 10, 315.	2.9	2
57	Renewable Biomaterials as Nanocarriers for Drug and Gene Delivery. , 2017, , 1-32.		1
58	Lipidâ€derived monomer and corresponding bioâ€based nanocomposites. Polymer International, 2016, 65, 653-660.	3.1	10
59	Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW). Chemosphere, 2016, 163, 334-341.	8.2	37
60	Green Biocomposites from Nanoengineered Hybrid Natural Fiber and Biopolymer. ACS Sustainable Chemistry and Engineering, 2016, 4, 1785-1793.	6.7	38
61	Drug encapsulation and release behavior of telechelic nanoparticles. Nanotechnology, 2015, 26, 415703.	2.6	5
62	Palladium (0) catalyzed Suzuki cross-coupling reactions of 2,4-dibromothiophene: selectivity, characterization and biological applications. Journal of Sulfur Chemistry, 2015, 36, 240-250.	2.0	9
63	PEG–lipid telechelics incorporating fatty acids from canola oil: synthesis, characterization and solution self-assembly. RSC Advances, 2014, 4, 26439.	3.6	25
64	In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. Journal of Hazardous Materials, 2014, 278, 360-371.	12.4	55
65	Feather Fiberâ€Based Thermoplastics: Effects of Different Plasticizers on Material Properties. Macromolecular Materials and Engineering, 2013, 298, 153-162.	3.6	59
66	Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Advances, 2013, 3, 20800-20810.	3.6	113
67	Design and Synthesis of Arylthiophene-2-Carbaldehydes via Suzuki-Miyaura Reactions and Their Biological Evaluation. Molecules, 2013, 18, 14711-14725.	3.8	21
68	Liquid Intake of Organic Shales. Energy & Fuels, 2012, 26, 5750-5758.	5.1	273
69	Effect of high pressure treatment on ovotransferrin. Food Chemistry, 2012, 135, 2245-2252.	8.2	45
70	Bioplastics from Feather Quill. Biomacromolecules, 2011, 12, 3826-3832.	5.4	107
71	Recent findings in (Ti)POSS-based polymer systems. Polymer Bulletin, 2011, 67, 1169-1183.	3.3	16
72	Preparation, Characterization, and Properties of Novel PSMAâ^'POSS Systems by Reactive Blending. Macromolecules, 2009, 42, 6614-6623.	4.8	85

#	Article	IF	CITATIONS
73	Rapid Block Copolymer Synthesis by Microwave-Assisted RAFT Polymerization. Macromolecules, 2009, 42, 7701-7708.	4.8	69
74	New ent–Kaurane type Diterpene Glycoside, Pulicaroside-B, from Pulicaria Undulata L. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	1