
Orit Shefi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/804303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Engineered Nanocomplex with Photodynamic and Photothermal Synergistic Properties for Cancer Treatment. International Journal of Molecular Sciences, 2022, 23, 2286.	4.1	10
2	Magnetic Assembly of a Multifunctional Guidance Conduit for Peripheral Nerve Repair. Advanced Functional Materials, 2021, 31, 2010837.	14.9	26
3	3D Printingâ€Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small, 2021, 17, e2100817.	10.0	61
4	Fabrication of Magnetic Platforms for Micron-Scale Organization of Interconnected Neurons. Journal of Visualized Experiments, 2021, , .	0.3	1
5	Grapheneâ€Based Nanomaterials for Neuroengineering: Recent Advances and Future Prospective. Advanced Functional Materials, 2021, 31, 2104887.	14.9	21
6	Magnetic Organization of Neural Networks via Microâ€Patterned Devices. Advanced Materials Interfaces, 2020, 7, 2000055.	3.7	7
7	Patterning of Particles and Live Cells at Single Cell Resolution. Micromachines, 2020, 11, 505.	2.9	5
8	Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification. Neuroinformatics, 2020, 18, 581-590.	2.8	6
9	Fluorescent Mantle Carbon Coated Core–Shell SPIONs for Neuroengineering Applications. ACS Applied Bio Materials, 2020, 3, 4665-4673.	4.6	27
10	Large-scale acoustic-driven neuronal patterning and directed outgrowth. Scientific Reports, 2020, 10, 4932.	3.3	17
11	Brief Electrical Stimulation Triggers an Effective Regeneration of Leech CNS. ENeuro, 2020, 7, ENEURO.0030-19.2020.	1.9	2
12	Neuroprotective Effect of Nerve Growth Factor Loaded in Porous Silicon Nanostructures in an Alzheimer's Disease Model and Potential Delivery to the Brain. Small, 2019, 15, e1904203.	10.0	30
13	Porous Materials: Neuroprotective Effect of Nerve Growth Factor Loaded in Porous Silicon Nanostructures in an Alzheimer's Disease Model and Potential Delivery to the Brain (Small 45/2019). Small, 2019, 15, 1970245.	10.0	0
14	Comparing Transcriptome Profiles of Neurons Interfacing Adjacent Cells and Nanopatterned Substrates Reveals Fundamental Neuronal Interactions. Nano Letters, 2019, 19, 1451-1459.	9.1	15
15	Oneâ€Pot Hydrothermal Synthesis of Elements (B, N, P)â€Doped Fluorescent Carbon Dots for Cell Labelling, Differentiation and Outgrowth of Neuronal Cells. ChemistrySelect, 2019, 4, 4222-4232.	1.5	29
16	Designing Porous Silicon Films as Carriers of Nerve Growth Factor. Journal of Visualized Experiments, 2019, , .	0.3	3
17	Magnetic Targeting of mTHPC To Improve the Selectivity and Efficiency of Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 45368-45380.	8.0	19
18	Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrasonics Sonochemistry, 2019, 52, 205-213.	8.2	70

ORIT SHEFI

#	Article	IF	CITATIONS
19	Element (B, N, P) doped carbon dots interaction with neural cells: promising results and future prospective. , 2019, , .		11
20	Metal- based nanoparticles as carriers of mTHPC drug for effective photodynamic therapy. , 2019, , .		1
21	Ultrafine Highly Magnetic Fluorescent γ-Fe ₂ O ₃ /NCD Nanocomposites for Neuronal Manipulations. ACS Omega, 2018, 3, 1897-1903.	3.5	22
22	Frontline Science: Elevated nuclear lamin A is permissive for granulocyte transendothelial migration but not for motility through collagen I barriers. Journal of Leukocyte Biology, 2018, 104, 239-251.	3.3	24
23	<i>meso</i> -Tetrahydroxyphenylchlorin-Conjugated Gold Nanoparticles as a Tool To Improve Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 2319-2327.	8.0	50
24	Frontiers in Neurochemistry. ChemPhysChem, 2018, 19, 1121-1122.	2.1	0
25	Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. Nanomaterials, 2018, 8, 707.	4.1	45
26	Selective inactivation of enzymes conjugated to nanoparticles using tuned laser illumination. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 767-774.	1.5	4
27	Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. Journal of Materials Chemistry B, 2017, 5, 1371-1379.	5.8	37
28	Mechanically Oriented 3D Collagen Hydrogel for Directing Neurite Growth. Tissue Engineering - Part A, 2017, 23, 403-414.	3.1	80
29	Interactions of Neurons with Physical Environments. Advanced Healthcare Materials, 2017, 6, 1700267.	7.6	76
30	Prolonged controlled delivery of nerve growth factor using porous silicon nanostructures. Journal of Controlled Release, 2017, 257, 51-59.	9.9	41
31	Branching morphology determines signal propagation dynamics in neurons. Scientific Reports, 2017, 7, 8877.	3.3	35
32	Neuronal Interfaces: Interactions of Neurons with Physical Environments (Adv. Healthcare Mater.) Tj ETQqO 0 0	rgBT /Over 7.6	rlock 10 Tf 50
33	Topographical impact of silver nanolines on the morphology of neuronal SH-SY5Y Cells. Journal of Materials Chemistry B, 2017, 5, 9346-9353.	5.8	12
34	Effect of different densities of silver nanoparticles on neuronal growth. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	16
35	Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. Journal of Nanobiotechnology, 2016, 14, 37.	9.1	110
36	Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration. Nano Letters, 2016, 16, 2567-2573.	9.1	221

Orit Shefi

#	Article	IF	CITATIONS
37	Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation. Nano Letters, 2016, 16, 2916-2920.	9.1	179
38	Engineered Promoters for Potent Transient Overexpression. PLoS ONE, 2016, 11, e0148918.	2.5	29
39	De novo transcriptome assembly databases for the central nervous system of the medicinal leech. Scientific Data, 2015, 2, 150015.	5.3	20
40	Fluorescence lifeâ€ŧime imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles. Journal of Biophotonics, 2015, 8, 944-951.	2.3	17
41	Promotion of neural sprouting using low-level green light-emitting diode phototherapy. Journal of Biomedical Optics, 2015, 20, 020502.	2.6	6
42	Nanometric agents in the service of neuroscience: Manipulation of neuronal growth and activity using nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1467-1479.	3.3	62
43	Substrates coated with silver nanoparticles as a neuronal regenerative material. International Journal of Nanomedicine, 2014, 9 Suppl 1, 23.	6.7	20
44	Spatial regulation dominates gene function in the ganglia chain. Bioinformatics, 2014, 30, 310-316.	4.1	6
45	Neuronal Growth on <scp>l</scp> - and <scp>d</scp> -Cysteine Self-Assembled Monolayers Reveals Neuronal Chiral Sensitivity. ACS Chemical Neuroscience, 2014, 5, 370-376.	3.5	46
46	Silver Nanoparticles Promote Neuronal Growth. Procedia Engineering, 2013, 59, 25-29.	1.2	13
47	Thermal Degradation of DNA. DNA and Cell Biology, 2013, 32, 298-301.	1.9	112
48	Gold nanoparticles-based biosensing of single nucleotide DNA mutations. International Journal of Biological Macromolecules, 2013, 59, 134-137.	7.5	33
49	Bombarding Cancer: Biolistic Delivery of therapeutics using Porous Si Carriers. Scientific Reports, 2013, 3, 2499.	3.3	33
50	Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron–neuron interactions. Journal of Molecular Histology, 2012, 43, 437-447.	2.2	38
51	Topographic cues of nanoâ€scale height direct neuronal growth pattern. Biotechnology and Bioengineering, 2012, 109, 1791-1797.	3.3	77
52	Microtargeted Gene Silencing and Ectopic Expression in Live Embryos Using Biolistic Delivery with a Pneumatic Capillary Gun. Journal of Neuroscience, 2006, 26, 6119-6123.	3.6	25
53	A two-phase growth strategy in cultured neuronal networks as reflected by the distribution of neurite branching angles. Journal of Neurobiology, 2005, 62, 361-368.	3.6	24
54	Morphological characterization ofin vitroneuronal networks. Physical Review E, 2002, 66, 021905.	2.1	135

Orit Shefi

#	Article	IF	CITATIONS
55	Self Organization of Two-dimensional Insect Neural Networks. AIP Conference Proceedings, 2002, , .	0.4	0
56	Growth morphology of two-dimensional insect neural networks. Neurocomputing, 2002, 44-46, 635-643.	5.9	36