Orit Shefi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/804303/publications.pdf

Version: 2024-02-01

56 2,047 24
papers citations h-index

57 57 57 2944
all docs docs citations times ranked citing authors

243625

44

g-index

#	Article	IF	Citations
1	Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration. Nano Letters, 2016, 16, 2567-2573.	9.1	221
2	Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation. Nano Letters, 2016, 16, 2916-2920.	9.1	179
3	Morphological characterization ofin vitroneuronal networks. Physical Review E, 2002, 66, 021905.	2.1	135
4	Thermal Degradation of DNA. DNA and Cell Biology, 2013, 32, 298-301.	1.9	112
5	Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. Journal of Nanobiotechnology, 2016, 14, 37.	9.1	110
6	Mechanically Oriented 3D Collagen Hydrogel for Directing Neurite Growth. Tissue Engineering - Part A, 2017, 23, 403-414.	3.1	80
7	Topographic cues of nanoâ€scale height direct neuronal growth pattern. Biotechnology and Bioengineering, 2012, 109, 1791-1797.	3.3	77
8	Interactions of Neurons with Physical Environments. Advanced Healthcare Materials, 2017, 6, 1700267.	7.6	76
9	Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrasonics Sonochemistry, 2019, 52, 205-213.	8.2	70
10	Nanometric agents in the service of neuroscience: Manipulation of neuronal growth and activity using nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1467-1479.	3.3	62
11	3D Printingâ€Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small, 2021, 17, e2100817.	10.0	61
12	<i>meso</i> -Tetrahydroxyphenylchlorin-Conjugated Gold Nanoparticles as a Tool To Improve Photodynamic Therapy. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 2319-2327.	8.0	50
13	Neuronal Growth on <scp>I</scp> - and <scp>d</scp> -Cysteine Self-Assembled Monolayers Reveals Neuronal Chiral Sensitivity. ACS Chemical Neuroscience, 2014, 5, 370-376.	3.5	46
14	Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. Nanomaterials, 2018, 8, 707.	4.1	45
15	Prolonged controlled delivery of nerve growth factor using porous silicon nanostructures. Journal of Controlled Release, 2017, 257, 51-59.	9.9	41
16	Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron–neuron interactions. Journal of Molecular Histology, 2012, 43, 437-447.	2.2	38
17	Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. Journal of Materials Chemistry B, 2017, 5, 1371-1379.	5.8	37
18	Growth morphology of two-dimensional insect neural networks. Neurocomputing, 2002, 44-46, 635-643.	5.9	36

#	Article	IF	CITATIONS
19	Branching morphology determines signal propagation dynamics in neurons. Scientific Reports, 2017, 7, 8877.	3.3	35
20	Gold nanoparticles-based biosensing of single nucleotide DNA mutations. International Journal of Biological Macromolecules, 2013, 59, 134-137.	7.5	33
21	Bombarding Cancer: Biolistic Delivery of therapeutics using Porous Si Carriers. Scientific Reports, 2013, 3, 2499.	3.3	33
22	Neuroprotective Effect of Nerve Growth Factor Loaded in Porous Silicon Nanostructures in an Alzheimer's Disease Model and Potential Delivery to the Brain. Small, 2019, 15, e1904203.	10.0	30
23	Oneâ€Pot Hydrothermal Synthesis of Elements (B, N, P)â€Doped Fluorescent Carbon Dots for Cell Labelling, Differentiation and Outgrowth of Neuronal Cells. ChemistrySelect, 2019, 4, 4222-4232.	1.5	29
24	Engineered Promoters for Potent Transient Overexpression. PLoS ONE, 2016, 11, e0148918.	2.5	29
25	Fluorescent Mantle Carbon Coated Core–Shell SPIONs for Neuroengineering Applications. ACS Applied Bio Materials, 2020, 3, 4665-4673.	4.6	27
26	Magnetic Assembly of a Multifunctional Guidance Conduit for Peripheral Nerve Repair. Advanced Functional Materials, 2021, 31, 2010837.	14.9	26
27	Microtargeted Gene Silencing and Ectopic Expression in Live Embryos Using Biolistic Delivery with a Pneumatic Capillary Gun. Journal of Neuroscience, 2006, 26, 6119-6123.	3.6	25
28	A two-phase growth strategy in cultured neuronal networks as reflected by the distribution of neurite branching angles. Journal of Neurobiology, 2005, 62, 361-368.	3.6	24
29	Frontline Science: Elevated nuclear lamin A is permissive for granulocyte transendothelial migration but not for motility through collagen I barriers. Journal of Leukocyte Biology, 2018, 104, 239-251.	3.3	24
30	Ultrafine Highly Magnetic Fluorescent \hat{I}^3 -Fe ₂ 0 ₃ /NCD Nanocomposites for Neuronal Manipulations. ACS Omega, 2018, 3, 1897-1903.	3.5	22
31	Grapheneâ€Based Nanomaterials for Neuroengineering: Recent Advances and Future Prospective. Advanced Functional Materials, 2021, 31, 2104887.	14.9	21
32	Substrates coated with silver nanoparticles as a neuronal regenerative material. International Journal of Nanomedicine, 2014, 9 Suppl 1, 23.	6.7	20
33	De novo transcriptome assembly databases for the central nervous system of the medicinal leech. Scientific Data, 2015, 2, 150015.	5.3	20
34	Magnetic Targeting of mTHPC To Improve the Selectivity and Efficiency of Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45368-45380.	8.0	19
35	Fluorescence lifeâ€time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles. Journal of Biophotonics, 2015, 8, 944-951.	2.3	17
36	Large-scale acoustic-driven neuronal patterning and directed outgrowth. Scientific Reports, 2020, 10, 4932.	3.3	17

#	Article	IF	CITATIONS
37	Effect of different densities of silver nanoparticles on neuronal growth. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	16
38	Comparing Transcriptome Profiles of Neurons Interfacing Adjacent Cells and Nanopatterned Substrates Reveals Fundamental Neuronal Interactions. Nano Letters, 2019, 19, 1451-1459.	9.1	15
39	Silver Nanoparticles Promote Neuronal Growth. Procedia Engineering, 2013, 59, 25-29.	1.2	13
40	Topographical impact of silver nanolines on the morphology of neuronal SH-SY5Y Cells. Journal of Materials Chemistry B, 2017, 5, 9346-9353.	5.8	12
41	Element (B, N, P) doped carbon dots interaction with neural cells: promising results and future prospective. , 2019 , , .		11
42	An Engineered Nanocomplex with Photodynamic and Photothermal Synergistic Properties for Cancer Treatment. International Journal of Molecular Sciences, 2022, 23, 2286.	4.1	10
43	Magnetic Organization of Neural Networks via Microâ€Patterned Devices. Advanced Materials Interfaces, 2020, 7, 2000055.	3.7	7
44	Spatial regulation dominates gene function in the ganglia chain. Bioinformatics, 2014, 30, 310-316.	4.1	6
45	Promotion of neural sprouting using low-level green light-emitting diode phototherapy. Journal of Biomedical Optics, 2015, 20, 020502.	2.6	6
46	Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification. Neuroinformatics, 2020, 18, 581-590.	2.8	6
47	Patterning of Particles and Live Cells at Single Cell Resolution. Micromachines, 2020, 11, 505.	2.9	5
48	Selective inactivation of enzymes conjugated to nanoparticles using tuned laser illumination. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 767-774.	1.5	4
49	Designing Porous Silicon Films as Carriers of Nerve Growth Factor. Journal of Visualized Experiments, 2019, , .	0.3	3
50	Neuronal Interfaces: Interactions of Neurons with Physical Environments (Adv. Healthcare Mater.) Tj ETQq0 0 0 r	gBJ /Overl	ock 10 Tf 50
51	Brief Electrical Stimulation Triggers an Effective Regeneration of Leech CNS. ENeuro, 2020, 7, ENEURO.0030-19.2020.	1.9	2
52	Fabrication of Magnetic Platforms for Micron-Scale Organization of Interconnected Neurons. Journal of Visualized Experiments, 2021, , .	0.3	1
53	Metal- based nanoparticles as carriers of mTHPC drug for effective photodynamic therapy. , 2019, , .		1
54	Self Organization of Two-dimensional Insect Neural Networks. AIP Conference Proceedings, 2002, , .	0.4	0

#	Article	IF	CITATIONS
55	Frontiers in Neurochemistry. ChemPhysChem, 2018, 19, 1121-1122.	2.1	O
56	Porous Materials: Neuroprotective Effect of Nerve Growth Factor Loaded in Porous Silicon Nanostructures in an Alzheimer's Disease Model and Potential Delivery to the Brain (Small 45/2019). Small, 2019, 15, 1970245.	10.0	0