## **Chunping Dai**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8042944/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of Fine Structure on the Variations of Thermal and Mechanical Properties in Flax Fibers<br>Modified with Different Alkaline Treatment Conditions. Journal of Natural Fibers, 2022, 19, 5239-5257. | 1.7 | 7         |
| 2  | A new protocol for rapid assessment of bond durability of bio-based pipes: bamboo winding composite pipe as a case study. European Journal of Wood and Wood Products, 2022, 80, 947-959.                    | 1.3 | 9         |
| 3  | Bamboo-based composites: A review on fundamentals and processes of bamboo bonding. Composites<br>Part B: Engineering, 2022, 235, 109776.                                                                    | 5.9 | 97        |
| 4  | Optimum veneer peeling temperatures for selected softwood species using big roller bars. European<br>Journal of Wood and Wood Products, 2021, 79, 151-159.                                                  | 1.3 | 1         |
| 5  | Characterizing Mat Formation of Bamboo Fiber Composites: Horizontal Density Distribution.<br>Materials, 2021, 14, 1198.                                                                                     | 1.3 | 9         |
| 6  | Mechanical and Adsorptive Properties of Foamed EVA-Modified Polypropylene/Bamboo Charcoal<br>Composites. Materials, 2021, 14, 1524.                                                                         | 1.3 | 1         |
| 7  | Enhancement of Flame Retardancy and Mechanical Properties of Polylactic Acid with a Biodegradable<br>Fire-Retardant Filler System Based on Bamboo Charcoal. Polymers, 2021, 13, 2167.                       | 2.0 | 16        |
| 8  | Water vapor sorption behavior of bamboo pertaining to its hierarchical structure. Scientific Reports, 2021, 11, 12714.                                                                                      | 1.6 | 9         |
| 9  | Sustainability and innovation of bamboo winding composite pipe products. Renewable and Sustainable<br>Energy Reviews, 2021, 144, 110976.                                                                    | 8.2 | 54        |
| 10 | Precise microcasting revealing the connectivity of bamboo pore network. Industrial Crops and Products, 2021, 170, 113787.                                                                                   | 2.5 | 25        |
| 11 | Computer simulation of the mat formation of bamboo scrimber composites. Composites Part A: Applied<br>Science and Manufacturing, 2021, 149, 106542.                                                         | 3.8 | 16        |
| 12 | Intumescent-Grafted Bamboo Charcoal: A Natural Nontoxic Fire-Retardant Filler for Polylactic Acid<br>(PLA) Composites. ACS Omega, 2021, 6, 26990-27006.                                                     | 1.6 | 17        |
| 13 | Hygroscopic swelling of moso bamboo cells. Cellulose, 2020, 27, 611-620.                                                                                                                                    | 2.4 | 38        |
| 14 | Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers.<br>Industrial Crops and Products, 2020, 155, 112787.                                                     | 2.5 | 31        |
| 15 | In-situ investigation of deformation behaviors of moso bamboo cells pertaining to flexural ductility.<br>Cellulose, 2020, 27, 9623-9635.                                                                    | 2.4 | 21        |
| 16 | Flexural strength and ductility of moso bamboo. Construction and Building Materials, 2020, 246, 118418.                                                                                                     | 3.2 | 93        |
| 17 | Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part I: Thermal and<br>Elemental Analyses. Polymers, 2020, 12, 2217.                                                               | 2.0 | 17        |
| 18 | Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses. Polymers, 2020, 12, 2238.                                         | 2.0 | 17        |

CHUNPING DAI

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fracture modes of bamboo fiber bundles in three-point bending. Cellulose, 2019, 26, 8101-8108.                                                                                | 2.4 | 26        |
| 20 | Mode I interlaminar fracture toughness behavior and mechanisms of bamboo. Materials and Design, 2019, 183, 108132.                                                            | 3.3 | 55        |
| 21 | The evaluation of panel bond quality and durability of hem-fir cross-laminated timber (CLT). European<br>Journal of Wood and Wood Products, 2018, 76, 833-841.                | 1.3 | 28        |
| 22 | Development of soy-based adhesives for the manufacture of wood composite products.<br>Holzforschung, 2012, 66, 857-862.                                                       | 0.9 | 19        |
| 23 | Characterizing hydro-thermal compression behavior of aspen wood strands. Holzforschung, 2009, 63, 609-617.                                                                    | 0.9 | 20        |
| 24 | Properties of strand boards with uniform and conventional vertical density profiles. Wood Science and Technology, 2009, 43, 559-574.                                          | 1.4 | 20        |
| 25 | A generalized mat consolidation model for wood composites. Holzforschung, 2008, 62, 201-208.                                                                                  | 0.9 | 12        |
| 26 | Heat and mass transfer in wood composite panels during hot pressing: Part 3. Predicted variations and interactions of the pressing variables. Holzforschung, 2007, 61, 74-82. | 0.9 | 9         |
| 27 | Heat and mass transfer in wood composite panels during hot pressing: Part 4. Experimental investigation and model validation. Holzforschung, 2007, 61, 83-88.                 | 0.9 | 14        |
| 28 | On horizontal density variation in randomly-formed short-fibre wood composite boards. Composites<br>Part A: Applied Science and Manufacturing, 1997, 28, 57-64.               | 3.8 | 12        |
| 29 | Spatial structure of wood composites in relation to processing and performance characteristics.<br>Wood Science and Technology, 1994, 28, 135.                                | 1.4 | 24        |
| 30 | Spatial structure of wood composites in relation to processing and performance characteristics.<br>Wood Science and Technology, 1993, 28, 45.                                 | 1.4 | 18        |