Pil Seok Chae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8042497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromofluorogenic naphthoquinolinedione-based probes for sensitive detection and removal of Hg2+ in aqueous solutions. Dyes and Pigments, 2022, 198, 110025.	2.0	21
2	A Chromo-Fluorogenic Naphthoquinolinedione-Based Probe for Dual Detection of Cu2+ and Its Use for Various Water Samples. Molecules, 2022, 27, 785.	1.7	7
3	Glyco‣teroidal Amphiphiles (GSAs) for Membrane Protein Structural Study. ChemBioChem, 2022, 23, .	1.3	4
4	Impact of novel detergents on membrane protein studies. CheM, 2022, 8, 980-1013.	5.8	31
5	Foldable Detergents for Membrane Protein Study: Importance of Detergent Core Flexibility in Protein Stabilization. Chemistry - A European Journal, 2022, 28, .	1.7	13
6	Development of 1,3-acetonedicarboxylate-derived glucoside amphiphiles (ACAs) for membrane protein study. Chemical Science, 2022, 13, 5750-5759.	3.7	5
7	A bis(fluorenyl-triazole)-conjugated naphthoquinoline-dione probe for a cascade detection of Cu2+ and Fâ^' and its logic circuit with a memory unit. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114048.	2.0	6
8	Foldable Detergents for Membrane Protein Stability. ChemBioChem, 2022, 23, .	1.3	8
9	Sensitive detection of DMSO/DMF in water, human urine and blood plasma using novel 1,8-naphthalimide-based amphiphilic spectroscopic probes. Dyes and Pigments, 2021, 189, 109240.	2.0	15
10	Conformationally flexible core-bearing detergents with a hydrophobic or hydrophilic pendant: Effect of pendant polarity on detergent conformation and membrane protein stability. Acta Biomaterialia, 2021, 128, 393-407.	4.1	15
11	Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltose-tris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability. ACS Chemical Biology, 2021, 16, 1779-1790.	1.6	6
12	Pyridoanthrone-based chromo-fluorogenic amphiphiles for selective CNâ^' detection and their bioimaging application. Sensors and Actuators B: Chemical, 2020, 304, 127396.	4.0	25
13	A dual-responsive anthrapyridone-triazole-based probe for selective detection of Ni2+ and Cu2+: A mimetic system for molecular logic gates based on color change. Dyes and Pigments, 2020, 174, 108092.	2.0	30
14	Diastereomeric Cyclopentane-Based Maltosides (CPMs) as Tools for Membrane Protein Study. Journal of the American Chemical Society, 2020, 142, 21382-21392.	6.6	10
15	A novel anthrapyridone diamine-based probe for selective and distinctive Cu2+ and Hg2+ sensing in aqueous solution; utility as molecular logic gates. Dyes and Pigments, 2020, 181, 108522.	2.0	30
16	New Malonate-Derived Tetraglucoside Detergents for Membrane Protein Stability. ACS Chemical Biology, 2020, 15, 1697-1707.	1.6	12
17	Pendant-bearing glucose-neopentyl glycol (P-GNG) amphiphiles for membrane protein manipulation: Importance of detergent pendant chain for protein stabilization. Acta Biomaterialia, 2020, 112, 250-261. 	4.1	14
18	Conformationally Restricted Monosaccharide-Cored Glycoside Amphiphiles: The Effect of Detergent Headgroup Variation on Membrane Protein Stability. ACS Chemical Biology, 2019, 14, 1717-1726.	1.6	13

#	Article	IF	CITATIONS
19	Selfâ€Assembly Behavior and Application of Terphenylâ€Cored Trimaltosides for Membraneâ€Protein Studies: Impact of Detergent Hydrophobic Group Geometry on Protein Stability. Chemistry - A European Journal, 2019, 25, 11545-11554.	1.7	12
20	Asymmetric maltose neopentyl glycol amphiphiles for a membrane protein study: effect of detergent asymmetricity on protein stability. Chemical Science, 2019, 10, 1107-1116.	3.7	28
21	Trehalose-cored amphiphiles for membrane protein stabilization: importance of the detergent micelle size in GPCR stability. Organic and Biomolecular Chemistry, 2019, 17, 3249-3257.	1.5	11
22	Selfâ€Assembly Behaviors of a Pentaâ€Phenylene Maltoside and Its Application for Membrane Protein Study. Chemistry - an Asian Journal, 2019, 14, 1926-1931.	1.7	11
23	1,3,5-Triazine-Cored Maltoside Amphiphiles for Membrane Protein Extraction and Stabilization. Journal of the American Chemical Society, 2019, 141, 19677-19687.	6.6	15
24	Fluorescence tunable thiophene-bis(benzimidazole)-based probes for a cascade trace detection of Hg2+ and lysine: A molecular switch mimic. Sensors and Actuators B: Chemical, 2019, 281, 933-944.	4.0	36
25	TURN-ON fluorescence detection of cyanide using an ensemble system consisting of a dansyl-based cationic probe and dicyanovinyl derivative. Dyes and Pigments, 2019, 162, 348-357.	2.0	23
26	Steroidâ€Based Amphiphiles for Membrane Protein Study: The Importance of Alkyl Spacers for Protein Stability. ChemBioChem, 2018, 19, 1433-1443.	1.3	5
27	Aggregation induced emission enhancement behavior of conformationally rigid pyreneamide-based probe for ultra-trace detection of picric acid (PA). Dyes and Pigments, 2018, 156, 307-317.	2.0	27
28	Vitamin E-based glycoside amphiphiles for membrane protein structural studies. Organic and Biomolecular Chemistry, 2018, 16, 2489-2498.	1.5	8
29	A comparative study of branched and linear mannitol-based amphiphiles on membrane protein stability. Analyst, The, 2018, 143, 5702-5710.	1.7	5
30	Rationally Engineered Tandem Facial Amphiphiles for Improved Membrane Protein Stabilization Efficacy. ChemBioChem, 2018, 19, 2225-2232.	1.3	6
31	An Engineered Lithocholateâ€Based Facial Amphiphile Stabilizes Membrane Proteins: Assessing the Impact of Detergent Customizability on Protein Stability. Chemistry - A European Journal, 2018, 24, 9860-9868.	1.7	16
32	Electronically tuned sulfonamide-based probes with ultra-sensitivity for Ga3+ or Al3+ detection in aqueous solution. Analytica Chimica Acta, 2017, 958, 38-50.	2.6	40
33	Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties. Journal of the American Chemical Society, 2017, 139, 3072-3081.	6.6	46
34	A simple and dual responsive ultrasensitive thioether-functionalized pyrenesulfonamide for the cascade detection of mercury ion and dithiouracil, a mimetic system for molecular logic gates. Sensors and Actuators B: Chemical, 2017, 251, 416-426.	4.0	18
35	Resorcinareneâ€Based Facial Glycosides: Implication of Detergent Flexibility on Membraneâ€Protein Stability. Chemistry - A European Journal, 2017, 23, 6724-6729.	1.7	23
36	Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chemical Science, 2017, 8, 8315-8324.	3.7	21

#	Article	IF	CITATIONS
37	Pyreneamide-based dipodal probes for ultra-sensitive and selective detection of 3,5-dinitrosalicylic acid in an aqueous solution. Dyes and Pigments, 2017, 147, 400-412.	2.0	12
38	New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Analyst, The, 2017, 142, 3889-3898.	1.7	11
39	Tandem malonate-based glucosides (TMGs) for membrane protein structural studies. Scientific Reports, 2017, 7, 3963.	1.6	11
40	New 1,8-naphthalimide-conjugated sulfonamide probes for TNP sensing in water. Sensors and Actuators B: Chemical, 2017, 240, 1-9.	4.0	61
41	Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region. Chemical Science, 2017, 8, 1169-1177.	3.7	16
42	Accessible Mannitolâ€Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation. Chemistry - A European Journal, 2016, 22, 7068-7073.	1.7	43
43	lsomeric Detergent Comparison for Membrane Protein Stability: Importance of Interâ€Alkyl hain Distance and Alkyl Chain Length. ChemBioChem, 2016, 17, 2334-2339.	1.3	17
44	Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation. Chemical Communications, 2016, 52, 12104-12107.	2.2	12
45	Mesityleneâ€Cored Glucoside Amphiphiles (MGAs) for Membrane Protein Studies: Importance of Alkyl Chain Density in Detergent Efficacy. Chemistry - A European Journal, 2016, 22, 18833-18839.	1.7	17
46	A class of rigid linker-bearing glucosides for membrane protein structural study. Chemical Science, 2016, 7, 1933-1939.	3.7	39
47	Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies. Journal of the American Chemical Society, 2016, 138, 3789-3796.	6.6	56
48	Effect of Detergents on Galactoside Binding by Melibiose Permeases. Biochemistry, 2015, 54, 5849-5855.	1.2	29
49	Novel Xyleneâ€Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation. Chemistry - A European Journal, 2015, 21, 10008-10013.	1.7	17
50	Deoxycholateâ€Based Glycosides (DCGs) for Membrane Protein Stabilisation. ChemBioChem, 2015, 16, 1454-1459.	1.3	5
51	Accessible glyco-tripod amphiphiles for membrane protein analysis. Analytical Methods, 2015, 7, 5808-5813.	1.3	2
52	Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study. Analyst, The, 2015, 140, 3157-3163.	1.7	47
53	Amphipathic Agents for Membrane Protein Study. Methods in Enzymology, 2015, 557, 57-94.	0.4	30
54	Hydrophobic Variations of <i>N</i> â€Oxide Amphiphiles for Membrane Protein Manipulation: Importance of Nonâ€hydrocarbon Groups in the Hydrophobic Portion. Chemistry - an Asian Journal, 2014, 9, 110-116.	1.7	8

#	Article	IF	CITATIONS
55	Heavy atom-bearing tripod amphiphiles for the membrane protein study. New Journal of Chemistry, 2014, 38, 2354.	1.4	3
56	New ganglio-tripod amphiphiles (TPAs) for membrane protein solubilization and stabilization: implications for detergent structure–property relationships. Organic and Biomolecular Chemistry, 2014, 12, 8480-8487.	1.5	12
57	Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation. Chemical Communications, 2014, 50, 12300-12303.	2.2	9
58	Hydrophobic variants of ganglio-tripod amphiphiles for membrane protein manipulation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 278-286.	1.4	29
59	Improved Glucoseâ€Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization and Stabilization. Chemistry - an Asian Journal, 2014, 9, 632-638.	1.7	32
60	Novel Tripod Amphiphiles for Membrane Protein Analysis. Chemistry - A European Journal, 2013, 19, 15645-15651.	1.7	49
61	Glucose-Neopentyl Glycol (GNG) amphiphiles for membrane protein study. Chemical Communications, 2013, 49, 2287-2289.	2.2	79
62	Carbohydrate-containing Triton X-100 analogues for membrane protein solubilization and stabilization. Molecular BioSystems, 2013, 9, 626.	2.9	20
63	Hemifluorinated Maltoseâ€Neopentyl Glycol (HFâ€MNG) Amphiphiles for Membrane Protein Stabilisation. ChemBioChem, 2013, 14, 452-455.	1.3	32
64	Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 2012, 482, 552-556.	13.7	714
65	A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins. Chemistry - A European Journal, 2012, 18, 9485-9490.	1.7	120
66	Inside Cover: A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins (Chem. Eur. J. 31/2012). Chemistry - A European Journal, 2012, 18, 9434-9434.	1.7	0
67	Identification of Chromatophore Membrane Protein Complexes Formed under Different Nitrogen Availability Conditions in <i>Rhodospirillum rubrum</i> . Journal of Proteome Research, 2011, 10, 2703-2714.	1.8	12
68	Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature, 2011, 477, 549-555.	13.7	2,712
69	Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature, 2011, 469, 175-180.	13.7	1,523
70	Structure and function of an irreversible agonist- \hat{l}^22 adrenoceptor complex. Nature, 2011, 469, 236-240.	13.7	741
71	Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature, 2011, 477, 611-615.	13.7	339
72	Structural flexibility of the Cαs α-helical domain in the β ₂ -adrenoceptor Cs complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16086-16091.	3.3	204

#	Article	IF	CITATIONS
73	Maltose–neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nature Methods, 2010, 7, 1003-1008.	9.0	397
74	Crystallographic Characterization of <i>N</i> -Oxide Tripod Amphiphiles. Journal of the American Chemical Society, 2010, 132, 1953-1959.	6.6	10
75	Tandem Facial Amphiphiles for Membrane Protein Stabilization. Journal of the American Chemical Society, 2010, 132, 16750-16752.	6.6	85
76	Tripod amphiphiles for membrane protein manipulation. Molecular BioSystems, 2010, 6, 89-94.	2.9	44
77	Peptide-Cleaving Catalyst Selective for Peptide Deformylase. Journal of the American Chemical Society, 2005, 127, 2396-2397.	6.6	64
78	Degradation of Myoglobin by Polymeric Artificial Metalloproteases Containing Catalytic Modules with Various Catalytic Group Densities:Â Site Selectivity in Peptide Bond Cleavage. Journal of the American Chemical Society, 2003, 125, 14580-14589.	6.6	46