
Luc Belzunces

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8042330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity of the Pesticides Imidacloprid, Difenoconazole and Clyphosate Alone and in Binary and Ternary Mixtures to Winter Honey Bees: Effects on Survival and Antioxidative Defenses. Toxics, 2022, 10, 104.	1.6	12
2	Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Scientific Reports, 2022, 12, 4281.	1.6	30
3	Preliminary report of honeybee physiological changes pre- and post-hybrid lavender season in high and low weight gain colonies. Apidologie, 2021, 52, 463-472.	0.9	1
4	Toxicological status changes the susceptibility of the honey bee Apis mellifera to a single fungicidal spray application. Environmental Science and Pollution Research, 2021, 28, 42807-42820.	2.7	10
5	Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. Ecotoxicology and Environmental Safety, 2021, 217, 112258.	2.9	14
6	Pesticide risk assessment in honeybees: Toward the use of behavioral and reproductive performances as assessment endpoints. Chemosphere, 2021, 276, 130134.	4.2	17
7	Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicology and Environmental Safety, 2020, 203, 111013.	2.9	54
8	The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by <i>Nosema ceranae</i> . Microbes and Environments, 2019, 34, 226-233.	0.7	54
9	Effects of clothianidin on antioxidant enzyme activities and malondialdehyde level in honey bee drone semen. Journal of Apicultural Research, 2019, 58, 740-745.	0.7	18
10	Physiological effects of gamma irradiation in the honeybee, Apis mellifera. Ecotoxicology and Environmental Safety, 2019, 174, 153-163.	2.9	5
11	Fireproofing of domestic upholstered furniture: Migration of flame retardants and potential risks. Journal of Hazardous Materials, 2019, 366, 556-562.	6.5	19
12	Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Molecular and Cellular Endocrinology, 2018, 475, 4-9.	1.6	83
13	Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Molecular and Cellular Endocrinology, 2018, 475, 54-73.	1.6	35
14	Efficiency of an air curtain as an antiâ€insect barrier: the honey bee as a model insect. Pest Management Science, 2018, 74, 2707-2715.	1.7	6
15	Vine and citrus mealybug pest control based on synthetic chemicals. A review. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	46
16	Call to restrict neonicotinoids. Science, 2018, 360, 973-973.	6.0	77
17	Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches: A case study of fipronil. Environmental Toxicology and Chemistry, 2017, 36, 2345-2351.	2.2	26
18	Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environmental Pollution, 2017, 229, 386-393.	3.7	59

#	Article	IF	CITATIONS
19	Lethal and sublethal effects, and incomplete clearance of ingested imidacloprid in honey bees (Apis) Tj ETQq1 🕻	0.784314 1.1	∔rgǥŢ /Overlo
20	Nosema ceranae, Fipronil and their combination compromise honey bee reproduction via changes in male physiology. Scientific Reports, 2017, 7, 8556.	1.6	35
21	Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS ONE, 2016, 11, e0162818.	1.1	126
22	Detection and quantification of boscalid and its metabolites in honeybees. Chemosphere, 2016, 156, 245-251.	4.2	20
23	Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific Reports, 2016, 6, 31904.	1.6	60
24	Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Environmental Science and Pollution Research, 2016, 23, 3086-3096.	2.7	26
25	Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicology and Environmental Safety, 2016, 127, 205-213.	2.9	44
26	Wings as a new route of exposure to pesticides in the honey bee. Environmental Toxicology and Chemistry, 2015, 34, 1983-1988.	2.2	14
27	Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environmental Health, 2015, 14, 13.	1.7	264
28	Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environmental Science and Pollution Research, 2015, 22, 148-154.	2.7	206
29	Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 2015, 22, 68-102.	2.7	639
30	Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 2015, 22, 5-34.	2.7	1,215
31	Larvicidal Activity of a Natural Botanical Biostop Moustiques [®] and Physiological Changes Induced in Susceptible and Resistant Strains of Anopheles gambiae Giles (Diptera: Culicidae). The Open Entomology Journal, 2015, 9, 12-19.	0.5	2
32	Semen quality of honey bee drones maintained from emergence to sexual maturity under laboratory, semi-field and field conditions. Apidologie, 2014, 45, 215-223.	0.9	27
33	Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Analytical and Bioanalytical Chemistry, 2014, 406, 621-633.	1.9	61
34	Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. Journal of Invertebrate Pathology, 2014, 121, 89-96.	1.5	63
35	A Pragmatic Approach to Assess the Exposure of the Honey Bee (Apis mellifera) When Subjected to Pesticide Spray. PLoS ONE, 2014, 9, e113728.	1.1	35
36	Honeybee biomarkers as promising tools to monitor environmental quality. Environment International, 2013, 60, 31-41.	4.8	83

#	Article	IF	CITATIONS
37	Enzymatic biomarkers as tools to assess environmental quality: A case study of exposure of the honeybee <i>Apis mellifera</i> to insecticides. Environmental Toxicology and Chemistry, 2013, 32, 2117-2124.	2.2	107
38	Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 2013, 5, 293-305.	3.1	352
39	Standard methods for toxicology research in <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-60.	0.7	131
40	Size Changes in Honey Bee Larvae Oenocytes Induced by Exposure to Paraquat at Very Low Concentrations. PLoS ONE, 2013, 8, e65693.	1.1	50
41	Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?. PLoS ONE, 2013, 8, e72016.	1.1	574
42	Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Scientific Reports, 2012, 2, 326.	1.6	161
43	Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera. PLoS ONE, 2012, 7, e37017.	1.1	204
44	Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: Application to the systemic insecticide thiamethoxam. Ecotoxicology and Environmental Safety, 2012, 82, 22-31.	2.9	123
45	Neural effects of insecticides in the honey bee. Apidologie, 2012, 43, 348-370.	0.9	152
46	Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y. NeuroToxicology, 2011, 32, 935-943.	1.4	70
47	Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae. PLoS ONE, 2011, 6, e21550.	1.1	325
48	Nosema spp. Infection Alters Pheromone Production in Honey Bees (Apis mellifera). Journal of Chemical Ecology, 2010, 36, 522-525.	0.9	52
49	Interactions between <i>Nosema</i> microspores and a neonicotinoid weaken honeybees (<i>Apis) Tj ETQq1 1</i>	0.784314 1.8	rgBT /Overlo 449
50	Phenylpyrazole insecticides induce cytotoxicity by altering mechanisms involved in cellular energy supply in the human epithelial cell model Caco-2. Toxicology in Vitro, 2009, 23, 589-597.	1.1	74
51	Elaboration of a toxicological reference value (TRV) for the reprotoxic effects of nonylphenol. Toxicology Letters, 2009, 189, S242.	0.4	2
52	Hysteresis of insect acetylcholinesterase. Chemico-Biological Interactions, 2008, 175, 410-412.	1.7	8
53	Is acetylcholinesterase a pertinent biomarker to detect exposure of pyrethroids? A study case with deltamethrin. Chemico-Biological Interactions, 2008, 175, 406-409.	1.7	35
54	Honeybee Apis mellifera acetylcholinesterase—A biomarker to detect deltamethrin exposure. Ecotoxicology and Environmental Safety, 2008, 69, 246-253.	2.9	76

#	Article	IF	CITATIONS
55	Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: Transepithelial transport, cellular uptake and efflux. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 261-270.	0.7	23
56	Excitable properties of adult skeletal muscle fibres from the honeybee Apis mellifera. Journal of Experimental Biology, 2007, 210, 454-464.	0.8	28
57	Existence of two membraneâ€bound acetylcholinesterases in the honey bee head. Archives of Insect Biochemistry and Physiology, 2007, 66, 122-134.	0.6	20
58	MODELING IMPACT OF PARATHION AND ITS METABOLITE PARAOXON ON THE NEMATODE CAENORHABDITIS ELEGANS IN SOIL. Environmental Toxicology and Chemistry, 2005, 24, 1387.	2.2	7
59	In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee,Apis mellifera L. Pest Management Science, 2005, 61, 742-748.	1.7	83
60	Human intestinal absorption of imidacloprid with Caco-2 cells as enterocyte model. Toxicology and Applied Pharmacology, 2004, 194, 1-9.	1.3	73
61	Metabolism of imidacloprid inApis mellifera. Pest Management Science, 2004, 60, 291-296.	1.7	145
62	In vivo distribution and metabolisation of14C-imidacloprid in different compartments ofApis mellifera L. Pest Management Science, 2004, 60, 1056-1062.	1.7	114
63	Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacology Biochemistry and Behavior, 2003, 75, 217-222.	1.3	50
64	Earthworm behaviour as a biomarker – a case study using imidacloprid. Pedobiologia, 2003, 47, 542-547.	0.5	18
65	Earthworm behaviour as a biomarker – a case study using imidaclopridThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 542-547.	0.5	53
66	3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma, 2002, 106, 247-271.	2.3	230
67	Parasitism in the social bee Apis mellifera: quantifying costs and benefits of behavioral resistance to Varroa destructor mites. Apidologie, 2002, 33, 433-445.	0.9	54
68	Contrasting Effects of Imidacloprid on Habituation in 7- and 8-Day-Old Honeybees (Apis mellifera). Neurobiology of Learning and Memory, 2001, 76, 183-191.	1.0	115
69	Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions. Applied Soil Ecology, 2001, 16, 109-120.	2.1	60
70	Dynamic study of the burrowing behaviour of Aporrectodea nocturna and Allolobophora chlorotica : interactions between earthworms and spatial avoidance of burrows. Biology and Fertility of Soils, 2001, 33, 310-316.	2.3	37
71	Three-dimensional trajectories of 60 Co-labelled earthworms in artificial cores of soil. European Journal of Soil Science, 2001, 52, 365-375.	1.8	22
72	Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in <i>Apis mellifera</i> . Environmental Toxicology and Chemistry, 2001, 20, 2482-2486.	2.2	328

#	Article	IF	CITATIONS
73	DISCREPANCY BETWEEN ACUTE AND CHRONIC TOXICITY INDUCED BY IMIDACLOPRID AND ITS METABOLITES IN APIS MELLIFERA. Environmental Toxicology and Chemistry, 2001, 20, 2482.	2.2	177
74	Characteristics of imidacloprid toxicity in two <i>Apis mellifera</i> subspecies. Environmental Toxicology and Chemistry, 2000, 19, 1901-1905.	2.2	168
75	Evolution of burrow systems after the accidental introduction of a new earthworm species into a Swiss pre-alpine meadow. Biology and Fertility of Soils, 2000, 31, 494-500.	2.3	18
76	CHARACTERISTICS OF IMIDACLOPRID TOXICITY IN TWO APIS MELLIFERA SUBSPECIES. Environmental Toxicology and Chemistry, 2000, 19, 1901.	2.2	75
77	Absence of a Protective Effect of the Oxime 2-PAM toward Paraoxon-Poisoned Honey Bees: Acetylcholinesterase Reactivation Not at Fault. Toxicology and Applied Pharmacology, 1998, 152, 184-192.	1.3	11
78	Seasonal variations in susceptibility of <i>Apis mellifera</i> to the synergistic action of prochloraz and deltamethrin. Environmental Toxicology and Chemistry, 1998, 17, 2517-2520.	2.2	54
79	A theoretical study of discriminating parameters in metabolic resistance to insecticides. Pest Management Science, 1998, 52, 354-360.	0.7	2
80	Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neuroscience Letters, 1998, 251, 57-60.	1.0	71
81	Parallel regional quantification of choline acetyltransferase and cholinesterase activity in the central nervous system of an invertebrate (Sepia officinalis). Brain Research Protocols, 1998, 3, 68-75.	1.7	18
82	SEASONAL VARIATIONS IN SUSCEPTIBILITY OF APIS MELLIFERA TO THE SYNERGISTIC ACTION OF PROCHLORAZ AND DELTAMETHRIN. Environmental Toxicology and Chemistry, 1998, 17, 2517.	2.2	23
83	Shielding of Acetylcholinesterase does not Result in the Protection of Honey Bee against Poisoning by Organophosphates. , 1998, , 552-552.		0
84	Central acetylcholine synthesis and catabolism activities in the cuttlefish during aging. Brain Research, 1997, 762, 219-222.	1.1	12
85	Comparison of properties of native and lytic forms of acetylcholinesterase fromApis mellifera. Archives of Insect Biochemistry and Physiology, 1997, 34, 143-157.	0.6	5
86	Changes in acetylcholinesterase during pupal development ofApis mellifera queen. Archives of Insect Biochemistry and Physiology, 1997, 36, 69-84.	0.6	10
87	Modulation of honey bee thermoregulation by adrenergic compounds. NeuroReport, 1996, 7, 1601-1604.	0.6	8
88	Synergy between deltamethrin and prochloraz in bees: Modeling approach. Environmental Toxicology and Chemistry, 1996, 15, 525-534.	2.2	20
89	Alteration of the homingâ€flight in the honey bee <i>Apis mellifera</i> L. Exposed to sublethal dose of deltamethrin. Environmental Toxicology and Chemistry, 1995, 14, 855-860.	2.2	89
90	MODELLING SYNERGISTIC EFFECTS OF TWO TOXIC AGENTS IN THE HONEYBEE. Journal of Biological Systems, 1995, 03, 253-263.	0.5	8

#	Article	IF	CITATIONS
91	ALTERATION OF THE HOMING-FLIGHT IN THE HONEY BEE APIS MELLIFERA L. EXPOSED TO SUBLETHAL DOSE OF DELTAMETHRIN. Environmental Toxicology and Chemistry, 1995, 14, 855.	2.2	77
92	In vivo and in vitro effects of wheat germ agglutinin and Bowman-Birk soybean trypsin inhibitor, two potential transgene products, on midgut esterase and protease activities from Apis mellifera. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1994, 109, 63-69.	0.2	12
93	Attraction of Varroa jacobsoni, parasite of Apis mellifera by electrical charges. Journal of Insect Physiology, 1992, 38, 111-117.	0.9	11
94	Evidence of synergy between prochloraz and deltamethrin inapis melliferaL.: a convenient biological approach. Pest Management Science, 1992, 36, 115-119.	0.7	72
95	Acetylcholinesterase in Apis mellifera head during post-embryonic development. Existence of a glycoinositol-anchored membrane form at eary pupal stages. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 103, 57-63.	0.2	6
96	Modulatory effect of learning and memory on honey bee brain acetylcholinesterase activity. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 103, 91-95.	0.2	18
97	Differential response of Apis mellifera acetylcholinesterase towards pirimicarb. NeuroReport, 1991, 2, 265-268.	0.6	5
98	Membrane acetylcholinesterase from Apis mellifera head solubilized by phosphatidylinositol-specific phospholipase C interacts with an anti-CRD antibody. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 95, 609-612.	0.2	5
99	Properties of acetylcholinesterase from Apis mellifera heads. Insect Biochemistry, 1988, 18, 811-819.	1.8	22