Ying Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/80423/publications.pdf

Version: 2024-02-01

218592 233338 2,109 45 48 26 citations h-index g-index papers 49 49 49 3331 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Separation of propylene and propane with pillar-layer metal–organic frameworks by exploiting thermodynamic-kinetic synergetic effect. Chemical Engineering Journal, 2022, 431, 133284.	6.6	7
2	Robust Nickel-Based Metal–Organic Framework for Highly Efficient Methane Purification and Capture. ACS Applied Materials & Interfaces, 2022, 14, 4242-4250.	4.0	17
3	A new yttriumâ€based metal–organic framework for molecular sieving of propane from propylene with high propylene capacity. AICHE Journal, 2022, 68, .	1.8	17
4	A cobaltâ€based metal–organic framework for efficient separation of propene from propane via electrostatic effect. AICHE Journal, 2022, 68, .	1.8	6
5	High-Performance Selective CO ₂ Capture on a Stable and Flexible Metal–Organic Framework via Discriminatory Gate-Opening Effect. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21089-21097.	4.0	14
6	Mechanistic study on boron adsorption and isotopic separation with magnetic magnetite nanoparticles. Journal of Materials Science, 2021, 56, 4624-4640.	1.7	13
7	A Lamellar MXene (Ti ₃ C ₂ T _{<i>x</i>})/PSS Composite Membrane for Fast and Selective Lithiumâ€ion Separation. Angewandte Chemie - International Edition, 2021, 60, 22265-22269.	7.2	117
8	A Lamellar MXene (Ti ₃ C ₂ T _{<i>x</i>})/PSS Composite Membrane for Fast and Selective Lithiumâ€lon Separation. Angewandte Chemie, 2021, 133, 22439-22443.	1.6	31
9	Highly Efficient Capture of Postcombustion Generated CO ₂ through a Copper-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 610-617.	2.5	14
10	Efficient adsorptive separation of propene over propane through a pillarâ€layer cobaltâ€based metal–organic framework. AICHE Journal, 2020, 66, e16858.	1.8	34
11	Fine-Tuned Hierarchical Architecture of MWW Zeolites for Highly Efficient Alkylation via Suitable Accommodation. Industrial & Engineering Chemistry Research, 2020, 59, 13932-13939.	1.8	5
12	Improving <scp>CH₄</scp> / <scp>N₂</scp> selectivity within isomeric Alâ€based MOFs for the highly selective capture of coalâ€mine methane. AlCHE Journal, 2020, 66, e16287.	1.8	42
13	Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks with high space–time yields. CrystEngComm, 2020, 22, 2675-2680.	1.3	15
14	Room-Temperature Synthesis of Pyr _{1/3} @Cuâ€"BTC with Enhanced Stability and Its Excellent Performance for Separation of Propylene/Propane. Industrial & Engineering Chemistry Research, 2020, 59, 6202-6209.	1.8	12
15	Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220, 115636.	1.9	36
16	Machine Learning-Driven Insights into Defects of Zirconium Metal–Organic Frameworks for Enhanced Ethane–Ethylene Separation. Chemistry of Materials, 2020, 32, 2986-2997.	3.2	44
17	Light Color Dihydroxybenzophenone Grafted Lignin with High UVA/UVB Absorbance Ratio for Efficient and Safe Natural Sunscreen. Industrial & Engineering Chemistry Research, 2020, 59, 17057-17068.	1.8	43
18	Facile synthesis of ultramicroporous carbon adsorbents with ultraâ€high <scp>CH₄</scp> uptake by in situ ionic activation. AICHE Journal, 2020, 66, e16231.	1.8	39

#	Article	IF	Citations
19	Fe-Encapsulated ZSM-5 Zeolite with Nanosheet-Assembled Structure for the Selective Catalytic Reduction of NO <i></i> with NH ₃ . Industrial & Description of No Section 2020, 59, 8592-8600.	1.8	11
20	Enhancing the Broad-Spectrum Adsorption of Lignin through Methoxyl Activation, Grafting Modification, and Reverse Self-Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 15966-15973.	3.2	54
21	Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. Chemical Engineering Journal, 2019, 375, 122074.	6.6	50
22	Moisture stability of ethaneâ€selective Ni(II), Fe(III), Zr(IV)â€based metal–organic frameworks. AICHE Journal, 2019, 65, e16616.	1.8	28
23	Selectively Trapping Ethane from Ethylene on Metal–Organic Framework MIL-53(Al)-FA. Industrial & Engineering Chemistry Research, 2019, 58, 8290-8295.	1.8	39
24	Innentitelbild: Feinâ€Tuning der Porengröße in versteiften ZIFâ€8_Cmâ€GerÃ⅓sten durch eine Mixedâ€Linkerâ€Strategie fÃ⅓r verbesserte permeative CO ₂ /CH ₄ â€Trennung (Angew.)	ŦjÆTQq0	@ rgBT /0
25	Development of Iron Encapsulated Hollow Beta Zeolites for Ammonia Selective Catalytic Reduction. Industrial & Engineering Chemistry Research, 2019, 58, 2914-2923.	1.8	10
26	Dual Template Preparation of MFI Zeolites with Tuning Catalytic Properties in Alkylation of Mesitylene with Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2019, 58, 2924-2932.	1.8	19
27	Feinâ€Tuning der Porengröße in versteiften ZIFâ€8_Cmâ€Gerüsten durch eine Mixedâ€Linkerâ€Strategie füverbesserte permeative CO ₂ /CH ₄ â€Trennung. Angewandte Chemie, 2019, 131, 333-337.	4r 1.6	18
28	Ultraâ€Tuning of the Aperture Size in Stiffened ZIFâ€8_Cm Frameworks with Mixedâ€Linker Strategy for Enhanced CO ₂ /CH ₄ Separation. Angewandte Chemie - International Edition, 2019, 58, 327-331.	7.2	215
29	Quantitative Predictions of Molecular Diffusion in Binary Mixed-Linker Zeolitic Imidazolate Frameworks Using Molecular Simulations. Journal of Physical Chemistry C, 2018, 122, 5627-5638.	1.5	15
30	Efficiently Exploring Adsorption Space to Identify Privileged Adsorbents for Chemical Separations of a Diverse Set of Molecules. ChemSusChem, 2018, 11, 1567-1575.	3.6	50
31	In Situ Fabrication of Hierarchical MTW Zeolite via Nanoparticle Assembly by a Tailored Simple Organic Molecule. Chemistry - A European Journal, 2018, 24, 8133-8140.	1.7	7
32	Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent & Interpenetrated & Interpene	4.0	112
33	Effective enhancement on methanol adsorption in Cu-BTC by combination of lithium-doping and nitrogen-doping functionalization. Journal of Materials Science, 2018, 53, 6080-6093.	1.7	9
34	Interface Engineering of a Compatible PEDOT Derivative Bilayer for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1600948.	1.9	40
35	Lattice-Gas Modeling of Adsorbate Diffusion in Mixed-Linker Zeolitic Imidazolate Frameworks: Effect of Local Imidazolate Ordering. Langmuir, 2017, 33, 6481-6491.	1.6	10
36	A Review on the Origin of Synthetic Metal Radical: Singlet Open-Shell Radical Ground State?. Journal of Physical Chemistry C, 2017, 121, 8579-8588.	1.5	60

#	Article	IF	CITATIONS
37	Enhanced Adsorption Performance of Aromatics on a Novel Chromium-Based MIL-101@Graphite Oxide Composite. Energy & Energy	2.5	20
38	Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging. Journal of Agricultural and Food Chemistry, 2016, 64, 9592-9600.	2.4	36
39	Aggregation-induced emission: the origin of lignin fluorescence. Polymer Chemistry, 2016, 7, 3502-3508.	1.9	72
40	Highly Efficient Inverted Perovskite Solar Cells With Sulfonated Lignin Doped PEDOT as Hole Extract Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12377-12383.	4.0	69
41	Unexpected fluorescent emission of graft sulfonated-acetone–formaldehyde lignin and its application as a dopant of PEDOT for high performance photovoltaic and light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 5297-5306.	2.7	42
42	Tuning the adsorption and separation properties of noble gases and N2 in CuBTC by ligand functionalization. RSC Advances, 2016, 6, 91093-91101.	1.7	11
43	Sulfonated ethylenediamine–acetone–formaldehyde condensate: preparation, unconventional photoluminescence and aggregation enhanced emission. RSC Advances, 2016, 6, 51257-51263.	1.7	27
44	Adsorptive Separation of Methanol–Acetone on Isostructural Series of Metal–Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts. ACS Applied Materials & Diterraces, 2015, 7, 26930-26940.	4.0	49
45	Effective Ligand Functionalization of Zirconium-Based Metal–Organic Frameworks for the Adsorption and Separation of Benzene and Toluene: A Multiscale Computational Study. ACS Applied Materials & Diterraces, 2015, 7, 5775-5787.	4.0	63
46	Highly Improved Efficiency of Deep-Blue Fluorescent Polymer Light-Emitting Device Based on a Novel Hole Interface Modifier with 1,3,5-Triazine Core. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26405-26413.	4.0	21
47	Effect of electrostatic properties of IRMOFs on VOCs adsorption: a density functional theory study. Adsorption, 2014, 20, 777-788.	1.4	9
48	Rapid Synthesis of Hierarchically Structured Multifunctional Metal–Organic Zeolites with Enhanced Volatile Organic Compounds Adsorption Capacity. Industrial & Engineering Chemistry Research, 0,	1.8	19

4