Ying Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/80423/publications.pdf

Version: 2024-02-01

218592 233338 2,109 45 48 26 citations h-index g-index papers 49 49 49 3331 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ultraâ€Tuning of the Aperture Size in Stiffened ZIFâ€8_Cm Frameworks with Mixedâ€Linker Strategy for Enhanced CO ₂ /CH ₄ Separation. Angewandte Chemie - International Edition, 2019, 58, 327-331.	7.2	215
2	A Lamellar MXene (Ti ₃ C ₂ T _{<i>x</i>})/PSS Composite Membrane for Fast and Selective Lithiumâ€ion Separation. Angewandte Chemie - International Edition, 2021, 60, 22265-22269.	7.2	117
3	Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Diterfaces, 2018, 10, 8366-8373.	4.0	112
4	Aggregation-induced emission: the origin of lignin fluorescence. Polymer Chemistry, 2016, 7, 3502-3508.	1.9	72
5	Highly Efficient Inverted Perovskite Solar Cells With Sulfonated Lignin Doped PEDOT as Hole Extract Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12377-12383.	4.0	69
6	Innentitelbild: Feinâ€Tuning der Porengröße in versteiften ZIFâ€8_Cmâ€GerÃ⅓sten durch eine Mixedâ€Linkerâ€Strategie fÃ⅓r verbesserte permeative CO ₂ /CH ₄ â€Trennung (Angew	ı.) TjÆTQq	0 && rgBT /O
7	Effective Ligand Functionalization of Zirconium-Based Metal–Organic Frameworks for the Adsorption and Separation of Benzene and Toluene: A Multiscale Computational Study. ACS Applied Materials & Diterfaces, 2015, 7, 5775-5787.	4.0	63
8	A Review on the Origin of Synthetic Metal Radical: Singlet Open-Shell Radical Ground State?. Journal of Physical Chemistry C, 2017, 121, 8579-8588.	1.5	60
9	Enhancing the Broad-Spectrum Adsorption of Lignin through Methoxyl Activation, Grafting Modification, and Reverse Self-Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 15966-15973.	3.2	54
10	Efficiently Exploring Adsorption Space to Identify Privileged Adsorbents for Chemical Separations of a Diverse Set of Molecules. ChemSusChem, 2018, 11, 1567-1575.	3.6	50
11	Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. Chemical Engineering Journal, 2019, 375, 122074.	6.6	50
12	Adsorptive Separation of Methanol–Acetone on Isostructural Series of Metal–Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts. ACS Applied Materials & Diterfaces, 2015, 7, 26930-26940.	4.0	49
13	Machine Learning-Driven Insights into Defects of Zirconium Metal–Organic Frameworks for Enhanced Ethane–Ethylene Separation. Chemistry of Materials, 2020, 32, 2986-2997.	3.2	44
14	Light Color Dihydroxybenzophenone Grafted Lignin with High UVA/UVB Absorbance Ratio for Efficient and Safe Natural Sunscreen. Industrial & Engineering Chemistry Research, 2020, 59, 17057-17068.	1.8	43
15	Unexpected fluorescent emission of graft sulfonated-acetone–formaldehyde lignin and its application as a dopant of PEDOT for high performance photovoltaic and light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 5297-5306.	2.7	42
16	Improving <scp>CH₄</scp> / <scp>N₂</scp> selectivity within isomeric Alâ€based MOFs for the highly selective capture of coalâ€mine methane. AICHE Journal, 2020, 66, e16287.	1.8	42
17	Interface Engineering of a Compatible PEDOT Derivative Bilayer for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1600948.	1.9	40
18	Selectively Trapping Ethane from Ethylene on Metal–Organic Framework MIL-53(Al)-FA. Industrial & Engineering Chemistry Research, 2019, 58, 8290-8295.	1.8	39

#	Article	IF	CITATIONS
19	Facile synthesis of ultramicroporous carbon adsorbents with ultraâ€high <scp>CH₄</scp> uptake by in situ ionic activation. AICHE Journal, 2020, 66, e16231.	1.8	39
20	Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging. Journal of Agricultural and Food Chemistry, 2016, 64, 9592-9600.	2.4	36
21	Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220, 115636.	1.9	36
22	Efficient adsorptive separation of propene over propane through a pillarâ€layer cobaltâ€based metal–organic framework. AICHE Journal, 2020, 66, e16858.	1.8	34
23	A Lamellar MXene (Ti ₃ C ₂ T _{<i>x</i>})/PSS Composite Membrane for Fast and Selective Lithiumâ€on Separation. Angewandte Chemie, 2021, 133, 22439-22443.	1.6	31
24	Moisture stability of ethaneâ€selective Ni(II), Fe(III), Zr(IV)â€based metal–organic frameworks. AICHE Journal, 2019, 65, e16616.	1.8	28
25	Sulfonated ethylenediamine–acetone–formaldehyde condensate: preparation, unconventional photoluminescence and aggregation enhanced emission. RSC Advances, 2016, 6, 51257-51263.	1.7	27
26	Highly Improved Efficiency of Deep-Blue Fluorescent Polymer Light-Emitting Device Based on a Novel Hole Interface Modifier with 1,3,5-Triazine Core. ACS Applied Materials & Device Based on a Novel 26405-26413.	4.0	21
27	Enhanced Adsorption Performance of Aromatics on a Novel Chromium-Based MIL-101@Graphite Oxide Composite. Energy & Dick 2017, 31, 13985-13990.	2.5	20
28	Rapid Synthesis of Hierarchically Structured Multifunctional Metal–Organic Zeolites with Enhanced Volatile Organic Compounds Adsorption Capacity. Industrial & Engineering Chemistry Research, 0, , .	1.8	19
29	Dual Template Preparation of MFI Zeolites with Tuning Catalytic Properties in Alkylation of Mesitylene with Benzyl Alcohol. Industrial & Damp; Engineering Chemistry Research, 2019, 58, 2924-2932.	1.8	19
30	Feinâ€Tuning der Porengröße in versteiften ZIFâ€8_Cmâ€Gerüsten durch eine Mixedâ€Linkerâ€Strategie fà verbesserte permeative CO ₂ /CH ₄ â€Trennung. Angewandte Chemie, 2019, 131, 333-337.	√4r 1.6	18
31	Robust Nickel-Based Metal–Organic Framework for Highly Efficient Methane Purification and Capture. ACS Applied Materials & Interfaces, 2022, 14, 4242-4250.	4.0	17
32	A new yttriumâ€based metal–organic framework for molecular sieving of propane from propylene with high propylene capacity. AICHE Journal, 2022, 68, .	1.8	17
33	Quantitative Predictions of Molecular Diffusion in Binary Mixed-Linker Zeolitic Imidazolate Frameworks Using Molecular Simulations. Journal of Physical Chemistry C, 2018, 122, 5627-5638.	1.5	15
34	Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks with high space–time yields. CrystEngComm, 2020, 22, 2675-2680.	1.3	15
35	Highly Efficient Capture of Postcombustion Generated CO ₂ through a Copper-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 610-617.	2.5	14
36	High-Performance Selective CO ₂ Capture on a Stable and Flexible Metal–Organic Framework via Discriminatory Gate-Opening Effect. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21089-21097.	4.0	14

#	Article	IF	CITATIONS
37	Mechanistic study on boron adsorption and isotopic separation with magnetic magnetite nanoparticles. Journal of Materials Science, 2021, 56, 4624-4640.	1.7	13
38	Room-Temperature Synthesis of Pyr _{1/3} @Cu–BTC with Enhanced Stability and Its Excellent Performance for Separation of Propylene/Propane. Industrial & Engineering Chemistry Research, 2020, 59, 6202-6209.	1.8	12
39	Tuning the adsorption and separation properties of noble gases and N2 in CuBTC by ligand functionalization. RSC Advances, 2016, 6, 91093-91101.	1.7	11
40	Fe-Encapsulated ZSM-5 Zeolite with Nanosheet-Assembled Structure for the Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . Industrial & Description of the Selective Catalytic Research, 2020, 59, 8592-8600.	1.8	11
41	Lattice-Gas Modeling of Adsorbate Diffusion in Mixed-Linker Zeolitic Imidazolate Frameworks: Effect of Local Imidazolate Ordering. Langmuir, 2017, 33, 6481-6491.	1.6	10
42	Development of Iron Encapsulated Hollow Beta Zeolites for Ammonia Selective Catalytic Reduction. Industrial & Engineering Chemistry Research, 2019, 58, 2914-2923.	1.8	10
43	Effect of electrostatic properties of IRMOFs on VOCs adsorption: a density functional theory study. Adsorption, 2014, 20, 777-788.	1.4	9
44	Effective enhancement on methanol adsorption in Cu-BTC by combination of lithium-doping and nitrogen-doping functionalization. Journal of Materials Science, 2018, 53, 6080-6093.	1.7	9
45	In Situ Fabrication of Hierarchical MTW Zeolite via Nanoparticle Assembly by a Tailored Simple Organic Molecule. Chemistry - A European Journal, 2018, 24, 8133-8140.	1.7	7
46	Separation of propylene and propane with pillar-layer metal–organic frameworks by exploiting thermodynamic-kinetic synergetic effect. Chemical Engineering Journal, 2022, 431, 133284.	6.6	7
47	A cobaltâ€based metal–organic framework for efficient separation of propene from propane via electrostatic effect. AICHE Journal, 2022, 68, .	1.8	6
48	Fine-Tuned Hierarchical Architecture of MWW Zeolites for Highly Efficient Alkylation via Suitable Accommodation. Industrial & Engineering Chemistry Research, 2020, 59, 13932-13939.	1.8	5