Thomas F Schilling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8042266/publications.pdf

Version: 2024-02-01

69 papers 14,481 citations

35 h-index 60 g-index

77 all docs

77 docs citations

77 times ranked 15293 citing authors

#	Article	IF	CITATIONS
1	Pthlha and mechanical force control early patterning of growth zones in the zebrafish craniofacial skeleton. Development (Cambridge), 2022, 149 , .	2.5	6
2	In vivo macromolecular crowding is differentially modulated by aquaporin 0 in zebrafish lens: Insights from a nanoenvironment sensor and spectral imaging. Science Advances, 2022, 8, eabj4833.	10.3	11
3	Endochondral growth zone pattern and activity in the zebrafish pharyngeal skeleton. Developmental Dynamics, 2021, 250, 74-87.	1.8	12
4	Multiple morphogens and rapid elongation promote segmental patterning during development. PLoS Computational Biology, 2021, 17, e1009077.	3.2	6
5	A show of Hands: Novel and conserved expression patterns of teleost hand paralogs during craniofacial, heart, fin, peripheral nervous system and gut development. Developmental Dynamics, 2021, 250, 1796-1809.	1.8	O
6	Differences in a Single Extracellular Residue Underlie Adhesive Functions of Two Zebrafish Aqp0s. Cells, 2021, 10, 2005.	4.1	2
7	Single-cell transcriptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development. Cell Reports, 2021, 37, 110140.	6.4	24
8	Tendon Cell Regeneration Is Mediated by Attachment Site-Resident Progenitors and BMP Signaling. Current Biology, 2020, 30, 3277-3292.e5.	3.9	19
9	Optical development in the zebrafish eye lens. FASEB Journal, 2020, 34, 5552-5562.	0.5	15
10	Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi. EvoDevo, 2019, 10, 18.	3.2	28
11	Transcriptomics reveals complex kinetics of dorsal–ventral patterning gene expression in the mandibular arch. Genesis, 2019, 57, e23275.	1.6	O
12	Assessment of Zebrafish Lens Nucleus Localization and Sutural Integrity. Journal of Visualized Experiments, 2019, , .	0.3	3
13	AqpOa Regulates Suture Stability in the Zebrafish Lens. , 2018, 59, 2869.		23
14	Modeling craniofacial development reveals spatiotemporal constraints on robust patterning of the mandibular arch. PLoS Computational Biology, 2018, 14, e1006569.	3.2	11
15	Mean-Independent Noise Control of Cell Fates via Intermediate States. IScience, 2018, 3, 11-20.	4.1	16
16	Cell-type heterogeneity in the early zebrafish olfactory epithelium is generated from progenitors within preplacodal ectoderm. ELife, 2018, 7, .	6.0	32
17	Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling. ELife, 2018, 7, .	6.0	81
18	An ongoing role for <i>Wnt</i> signaling in differentiating melanocytes inÂvivo. Pigment Cell and Melanoma Research, 2017, 30, 219-232.	3.3	28

#	Article	IF	CITATIONS
19	Zebrafish as a Model to Study Cohesin and Cohesinopathies. Methods in Molecular Biology, 2017, 1515, 177-196.	0.9	6
20	Cell Sorting and Noise-Induced Cell Plasticity Coordinate to Sharpen Boundaries between Gene Expression Domains. PLoS Computational Biology, 2017, 13, e1005307.	3.2	19
21	Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by <i>mef2ca</i> . Development (Cambridge), 2016, 143, 4430-4440.	2.5	31
22	Developmental basis of phenotypic integration in two Lake Malawi cichlids. EvoDevo, 2016, 7, 3.	3.2	32
23	Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. ELife, 2016, 5, e14034.	6.0	39
24	Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development (Cambridge), 2015, 142, 4191-4204.	2.5	125
25	Fascin1-Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest Cells. PLoS Genetics, 2015, 11, e1004946.	3.5	47
26	Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance. Developmental Biology, 2015, 402, 229-238.	2.0	65
27	Rabconnectin-3a Regulates Vesicle Endocytosis and Canonical Wnt Signaling in Zebrafish Neural Crest Migration. PLoS Biology, 2014, 12, e1001852.	5.6	38
28	Wnt Signaling Interacts with Bmp and Edn1 to Regulate Dorsal-Ventral Patterning and Growth of the Craniofacial Skeleton. PLoS Genetics, 2014, 10, e1004479.	3.5	41
29	Neural Crest Cells in Craniofacial Skeletal Development. , 2014, , 127-151.		11
30	Nipbl and Mediator Cooperatively Regulate Gene Expression to Control Limb Development. PLoS Genetics, 2014, 10, e1004671.	3.5	65
31	Fat-Dachsous Signaling Coordinates Cartilage Differentiation and Polarity during Craniofacial Development. PLoS Genetics, 2014, 10, e1004726.	3.5	56
32	Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. ELife, 2014, 3, .	6.0	104
33	In Vivo Analysis of Aquaporin O Function in Zebrafish: Permeability Regulation Is Required for Lens Transparency., 2013, 54, 5136.		32
34	Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development (Cambridge), 2012, 139, 2150-2155.	2.5	51
35	Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain. Molecular Systems Biology, 2012, 8, 613.	7.2	78
36	Dynamics and precision in retinoic acid morphogen gradients. Current Opinion in Genetics and Development, 2012, 22, 562-569.	3.3	88

#	Article	IF	CITATIONS
37	Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development (Cambridge), 2011, 138, $5135-5146$.	2.5	94
38	Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development (Cambridge), 2011, 138, 5147-5156.	2.5	79
39	Intracellular trafficking pathways in neural crest cell migration and fate specification. FASEB Journal, 2011, 25, 180.5.	0.5	0
40	Regulation of facial morphogenesis by endothelin signaling: Insights from mice and fish. American Journal of Medical Genetics, Part A, 2010, 152A, 2962-2973.	1.2	87
41	Two Distinct Aquaporin Os Required for Development and Transparency of the Zebrafish Lens., 2010, 51, 6582.		39
42	Ring finger protein 14 regulates betaâ€catenin/TCFâ€mediated transcription. FASEB Journal, 2010, 24, 713.7.	0.5	0
43	Fishing for the signals that pattern the face. Journal of Biology, 2009, 8, 101.	2.7	12
44	How degrading: Cyp26s in hindbrain development. Developmental Dynamics, 2008, 237, 2775-2790.	1.8	91
45	Anterior-posterior patterning and segmentation of the vertebrate head. Integrative and Comparative Biology, 2008, 48, 658-667.	2.0	15
46	Complex Regulation of cyp26a1 Creates a Robust Retinoic Acid Gradient in the Zebrafish Embryo. PLoS Biology, 2007, 5, e304.	5.6	213
47	Requirements for Endothelin type-A receptors and Endothelin-1 signaling in the facial ectoderm for the patterning of skeletogenic neural crest cells in zebrafish. Development (Cambridge), 2007, 134, 335-345.	2.5	87
48	Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development. Development (Cambridge), 2007, 134, 1279-1289.	2.5	36
49	Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 679-691.	1.3	110
50	Considering the zebrafish in a comparative context. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 515-522.	1.3	22
51	Cranial Neural Crest and Development of the Head Skeleton. , 2006, 589, 120-133.		111
52	Zebrafish in comparative context: A symposium. Integrative and Comparative Biology, 2006, 46, 569-576.	2.0	6
53	Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development (Cambridge), 2005, 132, 3977-3988.	2.5	265
54	AP2-dependent signals from the ectoderm regulate craniofacial development in the zebrafish embryo. Development (Cambridge), 2005, 132, 3127-3138.	2.5	73

#	Article	IF	CITATIONS
55	Development of Cartilage and Bone. Methods in Cell Biology, 2004, 76, 415-436.	1.1	77
56	Understanding endothelin-1 function during craniofacial development in the mouse and zebrafish. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 190-199.	3.6	54
57	Skeletal and pigment cell defects in the <i>lockjaw</i> mutant reveal multiple roles for zebrafish <i>tfap2a</i> in neural crest development. Developmental Dynamics, 2004, 229, 87-98.	1.8	67
58	Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain. Developmental Biology, 2004, 270, 186-199.	2.0	51
59	<i>lockjaw</i> encodes a zebrafish <i>tfap2a</i> required for early neural crest development. Development (Cambridge), 2003, 130, 5755-5768.	2.5	190
60	M <scp>olecular</scp> D <scp>issection of</scp> C <scp>raniofacial</scp> D <scp>evelopment</scp> U <scp>sing</scp> Z <scp>ebrafish</scp> . Critical Reviews in Oral Biology and Medicine, 2002, 13, 308-322.	4.4	118
61	Requirement for endoderm and FGF3 in ventral head skeleton formation. Development (Cambridge), 2002, 129, 4457-4468.	2.5	143
62	Requirement for endoderm and FGF3 in ventral head skeleton formation. Development (Cambridge), 2002, 129, 4457-68.	2.5	62
63	Origins of anteroposterior patterning andHoxgene regulation during chordate evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1599-1613.	4.0	96
64	Plasticity in Zebrafish hox Expression in the Hindbrain and Cranial Neural Crest. Developmental Biology, 2001, 231, 201-216.	2.0	107
65	The zebrafish <i>neckless</i> mutation reveals a requirement for <i>raldh2</i> in mesodermal signals that pattern the hindbrain. Development (Cambridge), 2001, 128, 3081-3094.	2.5	315
66	Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mechanisms of Development, 2000, 90, 237-252.	1.7	240
67	Pharyngeal arch patterning in the absence of neural crest. Current Biology, 1999, 9, 1481-1484.	3.9	186
68	Genetic analysis of craniofacial development in the vertebrate embryo. BioEssays, 1997, 19, 459-468.	2.5	107
69	Stages of embryonic development of the zebrafish. Developmental Dynamics, 1995, 203, 253-310.	1.8	10,076