Iñigo Liberal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8042255/publications.pdf

Version: 2024-02-01

361296 243529 1,956 49 20 44 citations h-index g-index papers 50 50 50 1862 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Near-zero refractive index photonics. Nature Photonics, 2017, 11, 149-158.	15.6	635
2	Photonic doping of epsilon-near-zero media. Science, 2017, 355, 1058-1062.	6.0	198
3	Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Science Advances, 2016, 2, e1600987.	4.7	90
4	The rise of near-zero-index technologies. Science, 2017, 358, 1540-1541.	6.0	81
5	Geometry-invariant resonant cavities. Nature Communications, 2016, 7, 10989.	5.8	79
6	High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nature Nanotechnology, 2017, 12, 228-232.	15.6	75
7	Waveguide metatronics: Lumped circuitry based on structural dispersion. Science Advances, 2016, 2, e1501790.	4.7	61
8	Zero-index structures as an alternative platform for quantum optics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 822-827.	3.3	55
9	Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics, 2018, 7, 1117-1127.	2.9	47
10	Substrate-integrated photonic doping for near-zero-index devices. Nature Communications, 2019, 10, 4132.	5.8	47
11	Induction Theorem Analysis of Resonant Nanoparticles: Design of a Huygens Source Nanoparticle Laser. Physical Review Applied, 2014, 1, .	1.5	42
12	Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2878-2883.	3.3	36
13	Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling [Invited]. Optical Materials Express, 2017, 7, 415.	1.6	34
14	Near-zero-index media as electromagnetic ideal fluids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24050-24054.	3.3	34
15	Analytical and Equivalent Circuit Models to Elucidate Power Balance in Scattering Problems. IEEE Transactions on Antennas and Propagation, 2013, 61, 2714-2726.	3.1	33
16	Fundamental Radiative Processes in Near-Zero-Index Media of Various Dimensionalities. ACS Photonics, 2020, 7, 1965-1970.	3.2	32
17	Structural dispersion–based reduction of loss in epsilon-near-zero and surface plasmon polariton waves. Science Advances, 2019, 5, eaav3764.	4.7	30
18	General Impedance Matching via Doped Epsilon-Near-Zero Media. Physical Review Applied, 2020, 13, .	1.5	29

#	Article	IF	CITATIONS
19	Monitoring Water Status of Grapevine by Means of THz Waves. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 507-513.	1.2	21
20	Electromagnetic force density in electrically and magnetically polarizable media. Physical Review A, 2013, 88, .	1.0	20
21	Upper Bounds on Scattering Processes and Metamaterial-Inspired Structures That Reach Them. IEEE Transactions on Antennas and Propagation, 2014, 62, 6344-6353.	3.1	20
22	Near-field electromagnetic trapping through curl-spin forces. Physical Review A, 2013, 87, .	1.0	19
23	A Multipolar Analysis of Near-Field Absorption and Scattering Processes. IEEE Transactions on Antennas and Propagation, 2013, 61, 5184-5199.	3.1	18
24	Least Upper Bounds of the Powers Extracted and Scattered by Bi-anisotropic Particles. IEEE Transactions on Antennas and Propagation, 2014, 62, 4726-4735.	3.1	18
25	Multiqubit subradiant states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -port waveguide devices: ε-and-ι⁄4-near-zero hubs and nonreciprocal circulators. Physical Review A, 2018, 97, .	1.0	18
26	Nonlinear metamaterial absorbers enabled by photonic doping of epsilon-near-zero metastructures. Physical Review B, 2020, 102, .	1.1	16
27	Nonperturbative Effective Magnetic Nonlinearity in ENZ Media Doped with Kerr Dielectric Inclusions. ACS Photonics, 2019, 6, 2823-2831.	3.2	15
28	Geometry-independent antenna based on Epsilon-near-zero medium. Nature Communications, 2022, 13, .	5.8	15
29	Quantum antenna arrays: The role of quantum interference on direction-dependent photon statistics. Physical Review A, 2018, 97, .	1.0	13
30	Control of a quantum emitter's bandwidth by managing its reactive power. Physical Review A, 2019, 100, .	1.0	13
31	Optomagnonics in Dispersive Media: Magnon-Photon Coupling Enhancement at the Epsilon-near-Zero Frequency. Physical Review Letters, 2022, 128, 183603.	2.9	13
32	Dispersion coding of ENZ media via multiple photonic dopants. Light: Science and Applications, 2022, 11,	7.7	13
33	Superbackscattering Antenna Arrays. IEEE Transactions on Antennas and Propagation, 2015, 63, 2011-2021.	3.1	12
34	Momentum considerations inside near-zero index materials. Light: Science and Applications, 2022, 11, 110.	7.7	11
35	Grating Lobes in Higher-Order Correlation Functions of Arrays of Quantum Emitters: Directional Photon Bunching Versus Correlated Directions. Photonics, 2019, 6, 14.	0.9	9
36	Light propagation and magnon-photon coupling in optically dispersive magnetic media. Physical Review B, 2022, 105, .	1.1	9

IñIGO LIBERAL

#	Article	IF	Citations
37	Magnetic field concentration assisted by epsilon-near-zero media. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160059.	1.6	8
38	Nonperturbative decay dynamics in metamaterial waveguides. Applied Physics Letters, 2021, 118, .	1.5	8
39	Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films. Optics Express, 2020, 28, 31624.	1.7	7
40	Superbackscattering nanoparticle dimers. Nanotechnology, 2015, 26, 274001.	1.3	6
41	Isotropic single-photon sources. Optics Letters, 2018, 43, 2736.	1.7	6
42	Soft surfaces and enhanced nonlinearity enabled via epsilon-near-zero media doped with zero-area perfect electric conductor inclusions. Optics Letters, 2020, 45, 4591.	1.7	5
43	Quantum Interference in Wilkinson Power Dividers. Laser and Photonics Reviews, 0, , 2200095.	4.4	2
44	Selected features of metamaterials with near-zero parameters., 2016,,.		1
45	Highly-Directive Cross-Polarized Backscatterers Integrated With a Ground Plane. IEEE Transactions on Antennas and Propagation, 2021, 69, 6739-6751.	3.1	1
46	Zero-index metamaterials for classical and quantum light. Applied Physics Letters, 2022, 120, 260401.	1.5	1
47	Superbackscattering nanoparticle architectures. , 2015, , .		0
48	Scattering properties of epsilon-and-mu-near-zero metamaterials., 2017,,.		0
49	Quantum emission between the weak and strong coupling regimes. , 2019, , .		O