
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8042156/publications.pdf Version: 2024-02-01

ADETOLA R ADESIDA

#	Article	IF	CITATIONS
1	Time course of 3D fibrocartilage formation by expanded human meniscus fibrochondrocytes in hypoxia. Journal of Orthopaedic Research, 2022, 40, 495-503.	2.3	4
2	Mechanotransduction in meniscus fibrochondrocytes: What about caveolae?. Journal of Cellular Physiology, 2022, 237, 1171-1181.	4.1	4
3	In vitro maturation and in vivo stability of bioprinted human nasal cartilage. Journal of Tissue Engineering, 2022, 13, 204173142210863.	5.5	8
4	Engineered Human Meniscus in Modeling Sex Differences of Knee Osteoarthritis in Vitro. Frontiers in Bioengineering and Biotechnology, 2022, 10, 823679.	4.1	10
5	Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Engineering - Part A, 2021, 27, 914-928.	3.1	15
6	Nasal Chondrocyte-Derived Soluble Factors Affect Chondrogenesis of Cocultured Mesenchymal Stem Cells. Tissue Engineering - Part A, 2021, 27, 37-49.	3.1	1
7	Histological and molecular characterization of the growing nasal septum in mice. Journal of Anatomy, 2021, 238, 751-764.	1.5	10
8	Bioprinting of human nasoseptal chondrocytesâ€ l aden collagen hydrogel for cartilage tissue engineering. FASEB Journal, 2021, 35, e21191.	0.5	22
9	Engineered human meniscus' matrix-forming phenotype is unaffected by low strain dynamic compression under hypoxic conditions. PLoS ONE, 2021, 16, e0248292.	2.5	7
10	Nasal Septum Deviation as the Consequence of BMP-Controlled Changes to Cartilage Properties. Frontiers in Cell and Developmental Biology, 2021, 9, 696545.	3.7	5
11	Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 703038.	3.7	3
12	Mechano-Hypoxia Conditioning of Engineered Human Meniscus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 739438.	4.1	12
13	Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. Journal of Tissue Engineering, 2021, 12, 204173142199084.	5.5	12
14	TEMPO-Oxidized Cellulose Nanofiber-Alginate Hydrogel as a Bioink for Human Meniscus Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 766399.	4.1	14
15	Re-Differentiation of Human Meniscus Fibrochondrocytes Differs in Three-Dimensional Cell Aggregates and Decellularized Human Meniscus Matrix Scaffolds. Annals of Biomedical Engineering, 2020, 48, 968-979.	2.5	8
16	Paternal Resistance Training Modulates Calcaneal Tendon Proteome in the Offspring Exposed to High-Fat Diet. Frontiers in Cell and Developmental Biology, 2020, 8, 380.	3.7	8
17	Effect of cell seeding density on matrixâ€forming capacity of meniscus fibrochondrocytes and nasal chondrocytes in meniscus tissue engineering. FASEB Journal, 2020, 34, 5538-5551.	0.5	15
18	Coâ€transplantation of human adiposeâ€derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation, 2020, 27, e12581.	2.8	16

#	Article	IF	CITATIONS
19	Suppression of Hypertrophy During in vitro Chondrogenesis of Cocultures of Human Mesenchymal Stem Cells and Nasal Chondrocytes Correlates With Lack of in vivo Calcification and Vascular Invasion. Frontiers in Bioengineering and Biotechnology, 2020, 8, 572356.	4.1	10
20	Calcaneal Tendon Plasticity Following Gastrocnemius Muscle Injury in Rat. Frontiers in Physiology, 2019, 10, 1098.	2.8	14
21	Mimicking "J-Shaped―and Anisotropic Stress–Strain Behavior of Human and Porcine Aorta by Fabric-Reinforced Elastomer Composites. ACS Applied Materials & Interfaces, 2019, 11, 33323-33335.	8.0	38
22	Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019, 20, 4628.	4.1	160
23	Mesenchymal stem cell therapy inhibited inflammatory and profibrotic pathways induced by partial bladder outlet obstruction and prevented high-pressure urine storage. Journal of Pediatric Urology, 2019, 15, 254.e1-254.e10.	1.1	14
24	Hypoxia and TGF-β3 Synergistically Mediate Inner Meniscus-Like Matrix Formation by Fibrochondrocytes. Tissue Engineering - Part A, 2019, 25, 446-456.	3.1	14
25	PD09-08â€∱INTRAPERITONEAL ADMINISTRATION OF MESENCHYMAL STEM CELLS IS EFFECTIVE IN PREVENTING DETRUSOR DYSFUNCTION AFTER PARTIAL BLADDER OUTLET OBSTRUCTION. Journal of Urology, 2019, 201, .	0.4	0
26	Mesenchymal stem cells inhibit hypoxia-induced inflammatory and fibrotic pathways in bladder smooth muscle cells. World Journal of Urology, 2018, 36, 1157-1165.	2.2	18
27	Angiogenic approaches to meniscal healing. Injury, 2018, 49, 467-472.	1.7	10
28	Osteoarthritic human chondrocytes proliferate in 3D co ulture with mesenchymal stem cells in suspension bioreactors. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1418-e1432.	2.7	15
29	Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study. Tissue Engineering - Part A, 2018, 24, 761-774.	3.1	28
30	Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. PLoS ONE, 2018, 13, e0206449.	2.5	49
31	Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomaterialia, 2018, 80, 131-143.	8.3	47
32	Ethylene glycol and glycerol loading and unloading in porcine meniscal tissue. Cryobiology, 2017, 74, 50-60.	0.7	7
33	Current concepts on structure–function relationships in the menisci. Connective Tissue Research, 2017, 58, 271-281.	2.3	45
34	Cotransplantation of Mesenchymal Stem Cells With Neonatal Porcine Islets Improve Graft Function in Diabetic Mice. Diabetes, 2017, 66, 1312-1321.	0.6	38
35	Plasticity of Human Meniscus Fibrochondrocytes: A Study on Effects of Mitotic Divisions and Oxygen Tension. Scientific Reports, 2017, 7, 12148.	3.3	33
36	Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting, 2017, 8, 1-7.	5.8	80

#	Article	IF	CITATIONS
37	Strategies to Mitigate Variability in Engineering Human Nasal Cartilage. Scientific Reports, 2017, 7, 6490.	3.3	28
38	Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. Npj Microgravity, 2017, 3, 28.	3.7	18
39	Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 58-66.	1.5	34
40	Clinical Studies Using Biological and Synthetic Materials for Meniscus Replacement. Current Stem Cell Research and Therapy, 2017, 12, 348-353.	1.3	7
41	Anatomical study: comparing the human, sheep and pig knee meniscus. Journal of Experimental Orthopaedics, 2016, 3, 35.	1.8	48
42	Optimal Seeding Densities for <i>In Vitro</i> Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold. Tissue Engineering - Part C: Methods, 2016, 22, 208-220.	2.1	28
43	Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Research and Therapy, 2015, 6, 84.	5.5	75
44	The structural and compositional transition of the meniscal roots into the fibrocartilage of the menisci. Journal of Anatomy, 2015, 226, 169-174.	1.5	25
45	Optimizing methods to generate tissue engineered cartilage constructs under serum free conditions in suspension culture. Osteoarthritis and Cartilage, 2015, 23, A415-A416.	1.3	0
46	Meniscus repair using mesenchymal stem cells – a comprehensive review. Stem Cell Research and Therapy, 2015, 6, 86.	5.5	73
47	Stem Cell Therapy: Current Applications and Potential for Urology. Current Urology Reports, 2015, 16, 77.	2.2	9
48	Porous Scaffold Seeding and Chondrogenic Differentiation of BMSC-seeded Scaffolds. Bio-protocol, 2015, 5, .	0.4	4
49	Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Research and Therapy, 2014, 16, 432.	3.5	159
50	Tieâ€fibre structure and organization in the knee menisci. Journal of Anatomy, 2014, 224, 531-537.	1.5	62
51	Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 965-973.	2.7	32
52	Effect of interleukin- $1\hat{l}^2$ treatment on co-cultures of human meniscus cells and bone marrow mesenchymal stromal cells. BMC Musculoskeletal Disorders, 2013, 14, 216.	1.9	12
53	Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskeletal Disorders, 2013, 14, 353.	1.9	27
54	A Systematic Review of Tissue Engineered Meniscus and Replacement Strategies: Preclinical Models. Current Stem Cell Research and Therapy, 2013, 8, 232-242.	1.3	9

#	Article	IF	CITATIONS
55	Applications of Stem Cell Therapy for Physeal Injuries Current Stem Cell Research and Therapy, 2013, 8, 451-455.	1.3	5
56	A Systematic Review of Tissue Engineered Meniscus: Cell-Based Preclinical Models. Current Stem Cell Research and Therapy, 2013, 8, 222-231.	1.3	15
57	A Systematic Review of Tissue Engineered Meniscus Strategies: Experimental Preclinical Studies. Current Stem Cell Research and Therapy, 2013, 999, 1-7.	1.3	0
58	Stem Cell and Tissue Engineering Applications in Orthopaedics and Musculoskeletal Medicine. Stem Cells International, 2012, 2012, 1-2.	2.5	10
59	Human Mesenchymal Stem Cells Protect Human Islets from Pro-Inflammatory Cytokines. PLoS ONE, 2012, 7, e38189.	2.5	112
60	Current Clinical Therapies for Cartilage Repair, their Limitation and the Role of Stem Cells. Current Stem Cell Research and Therapy, 2012, 7, 143-148.	1.3	61
61	The Effects of Ageing on Proliferation Potential, Differentiation Potential and Cell Surface Characterisation of Human Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2012, 7, 282-286.	1.3	22
62	Osteogenic Differentiation of Human Mesenchymal Stem Cells Cultured with Dexamethasone, Vitamin D3, Basic Fibroblast Growth Factor, and Bone Morphogenetic Protein-2. Connective Tissue Research, 2012, 53, 117-131.	2.3	52
63	Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells. Arthritis Research and Therapy, 2012, 14, R153.	3.5	24
64	Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research and Therapy, 2012, 3, 9.	5.5	169
65	Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes. PLoS ONE, 2012, 7, e39339.	2.5	24
66	Vitrification of intact human articular cartilage. Biomaterials, 2012, 33, 6061-6068.	11.4	66
67	Fat padâ€derived mesenchymal stem cells as a potential source for cellâ€based adipose tissue repair strategies. Cell Proliferation, 2012, 45, 111-120.	5.3	57
68	Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. Journal of Cellular Physiology, 2012, 227, 88-97.	4.1	219
69	Embryonic versus mesenchymal stem cells in cartilage repair. Journal of Stem Cells, 2012, 7, 105-11.	1.0	1
70	The use of nanotechnology in tendon regeneration and repair. Journal of Stem Cells, 2012, 7, 121-6.	1.0	2
71	Immunohistochemical characterization of reparative tissue present in human osteoarthritic tissue. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 456, 561-569.	2.8	16
72	Bone marrowâ€derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. Journal of Orthopaedic Research, 2010, 28, 834-840.	2.3	67

#	Article	IF	CITATIONS
73	The epitope characterisation and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with ageing in later life. Injury, 2009, 40, 150-157.	1.7	69
74	Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Research and Therapy, 2008, 10, R74.	3.5	79
75	Human meniscus cells express hypoxia inducible factor-1α and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Research and Therapy, 2007, 9, R69.	3.5	54
76	Hypoxic conditions increase hypoxia-inducible transcription factor 2α and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis Research and Therapy, 2007, 9, R55.	3.5	183
77	Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis and Cartilage, 2007, 15, 48-58.	1.3	89
78	The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia. Arthritis Research and Therapy, 2006, 8, R61.	3.5	66
79	Nonepitopic antibody binding sequence: implications in screening and development of peptide vaccines. Vaccine, 1999, 18, 315-320.	3.8	4
80	Inhibition of human leukaemia 60 cell growth by mercapturic acid metabolites of phenylethyl isothiocyanate. Food and Chemical Toxicology, 1996, 34, 385-392.	3.6	39
81	Inhibition of human leukaemia 60 cell growth by S-d-lactoylglutathione in vitro. Mediation by metabolism to N-d-lactoylcysteine and induction of apoptosis. Leukemia Research, 1996, 20, 17-26.	0.8	18
82	Facile synthesis of (R)N-2-hydroxyacyl-L-cysteine derivatives: (R)N-2-hydroxyacyl transfer from enzymatically-synthesized (R)S-2-hydroxyacylglutathione derivatives to L-cysteine. Amino Acids, 1995, 9, 185-189.	2.7	1
83	Addressing Rheological Issues at the Micro-Extrusion and Layer-Stacking Stages of Collagen Bioprinting. SSRN Electronic Journal, 0, , .	0.4	0