
Grégory Durand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/804098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Determinants for OMF Selectivity in Tripartite RND Multidrug Efflux Systems. Antibiotics, 2022, 11, 126.	3.7	6
2	Maltose-Based Fluorinated Surfactants for Membrane-Protein Extraction and Stabilization. Langmuir, 2021, 37, 2111-2122.	3.5	11
3	Glucose-Based Fluorinated Surfactants as Additives for the Crystallization of Membrane Proteins: Synthesis and Preliminary Physical–Chemical and Biochemical Characterization. ACS Omega, 2021, 6, 24397-24406.	3.5	2
4	Selfâ€Assembly of Proteinâ€Containing Lipidâ€Bilayer Nanodiscs from Smallâ€Molecule Amphiphiles. Small, 2021, 17, e2103603.	10.0	16
5	Hybrid Fluorocarbon–Hydrocarbon Surfactants: Synthesis and Colloidal Characterization. Journal of Organic Chemistry, 2021, 86, 14672-14683.	3.2	1
6	Detergentâ€Like Polymerizable Monomers: Synthesis, Physicochemical, and Biochemical Characterization. European Journal of Organic Chemistry, 2020, 2020, 5340-5349.	2.4	0
7	Biotinylated non-ionic amphipols for GPCR ligands screening. Methods, 2020, 180, 69-78.	3.8	6
8	Lactobionamide-based fluorinated detergent for functional and structural stabilization of membrane proteins. Methods, 2020, 180, 19-26.	3.8	7
9	Substituted α-Phenyl and α-Naphthlyl- <i>N</i> - <i>tert</i> -butyl Nitrones: Synthesis, Spin-Trapping, and Neuroprotection Evaluation. Journal of Organic Chemistry, 2020, 85, 6073-6085.	3.2	16
10	<i>Para</i> -Substituted α-Phenyl- <i>N</i> - <i>tert</i> -butyl Nitrones: Spin-Trapping, Redox and Neuroprotective Properties. ACS Omega, 2020, 5, 30989-30999.	3.5	5
11	Hybrid Double-Chain Maltose-Based Detergents: Synthesis and Colloidal and Biochemical Evaluation. Journal of Organic Chemistry, 2019, 84, 10606-10614.	3.2	6
12	Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1489-1501.	2.6	11
13	Reactivities of MeO-substituted PBN-type nitrones. New Journal of Chemistry, 2019, 43, 15754-15762.	2.8	6
14	Glycosylated Amphiphilic Calixareneâ€Based Detergent for Functional Stabilization of Native Membrane Proteins ChemistrySelect, 2019, 4, 5535-5539.	1.5	11
15	A Novel Nitrone-Trolox Conjugate Inhibits Membrane Lipid Oxidation Through Synergistic Antioxidant Effects. Biophysical Journal, 2019, 116, 227a.	0.5	1
16	Hydrogenated Diglucose Detergents for Membrane-Protein Extraction and Stabilization. Langmuir, 2019, 35, 4287-4295.	3.5	12
17	Fluorinated diglucose detergents for membrane-protein extraction. Methods, 2018, 147, 84-94.	3.8	18
18	Model-Free Analysis of Critical Micellar Concentrations for Detecting Demixing in Surfactant Mixtures. Analytical Chemistry, 2017, 89, 3245-3249.	6.5	10

Grégory Durand

#	Article	IF	CITATIONS
19	The substitution of Proline 168 favors Bax oligomerization and stimulates its interaction with LUVs and mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1144-1155.	2.6	20
20	α-Phenyl- <i>N</i> -cyclohexyl Nitrones: Preparation and Use as Spin-Traps. Journal of Organic Chemistry, 2017, 82, 135-142.	3.2	2
21	Cholesterol-nitrone conjugates as protective agents against lipid oxidation: A model membrane study. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2495-2504.	2.6	8
22	Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression. PLoS ONE, 2017, 12, e0174689.	2.5	28
23	Nitrone Derivatives as Therapeutics: From Chemical Modification to Specific-targeting. Current Topics in Medicinal Chemistry, 2017, 17, 2006-2022.	2.1	25
24	Electrochemical and Spin-Trapping Properties of para-substituted α-Phenyl-N-tert-butyl Nitrones. Electrochimica Acta, 2016, 193, 231-239.	5.2	15
25	Vitamin C boosts ceria-based catalyst recycling. Green Chemistry, 2016, 18, 3656-3668.	9.0	26
26	Exercise does not activate the β3 adrenergic receptor–eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Research in Cardiology, 2016, 111, 40.	5.9	36
27	Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochemical Pharmacology, 2016, 104, 108-117.	4.4	14
28	Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation. Bioconjugate Chemistry, 2016, 27, 772-781.	3.6	3
29	Hybrid Fluorinated and Hydrogenated Double-Chain Surfactants for Handling Membrane Proteins. Journal of Organic Chemistry, 2016, 81, 681-688.	3.2	11
30	Micellar and biochemical properties of a propyl-ended fluorinated surfactant designed for membrane–protein study. Journal of Colloid and Interface Science, 2015, 445, 127-136.	9.4	30
31	A Fluorinated Detergent for Membraneâ€Protein Applications. Angewandte Chemie - International Edition, 2015, 54, 5069-5073.	13.8	65
32	The Disordered Region of the HCV Protein NS5A: Conformational Dynamics, SH3 Binding, and Phosphorylation. Biophysical Journal, 2015, 109, 1483-1496.	0.5	19
33	Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes. Journal of Membrane Biology, 2014, 247, 1031-1041.	2.1	11
34	Amphipol-Mediated Screening of Molecular Orthoses Specific for Membrane Protein Targets. Journal of Membrane Biology, 2014, 247, 925-940.	2.1	22
35	Reactivities of Substituted α-Phenyl- <i>N</i> - <i>tert</i> -butyl Nitrones. Journal of Organic Chemistry, 2014, 79, 6615-6626.	3.2	21
36	The Use of Amphipols for Solution NMR Studies of Membrane Proteins: Advantages and Constraints as Compared to Other Solubilizing Media. Journal of Membrane Biology, 2014, 247, 827-842.	2.1	40

GRéGORY DURAND

#	Article	IF	CITATIONS
37	PBN derived amphiphilic spin-traps. II/Study of their antioxidant properties in biomimetic membranes. Colloids and Surfaces B: Biointerfaces, 2014, 113, 384-393.	5.0	6
38	New Amphiphiles to Handle Membrane Proteins: "Ménage à Trois―Between Chemistry, Physical Chemistry, and Biochemistry. , 2014, , 205-251.		13
39	Small angle neutron scattering for the study of solubilised membrane proteins. European Physical Journal E, 2013, 36, 71.	1.6	70
40	Assessing the Conformational Changes of pb5, the Receptor-binding Protein of Phage T5, upon Binding to Its Escherichia coli Receptor FhuA. Journal of Biological Chemistry, 2013, 288, 30763-30772.	3.4	40
41	Temperature-Responsive Self-Assemblies of â€~Kinked' Amphiphiles. Australian Journal of Chemistry, 2013, 66, 899.	0.9	2
42	Regulation of Light Harvesting in the Green Alga <i>Chlamydomonas reinhardtii</i> : The C-Terminus of LHCSR ls the Knob of a Dimmer Switch. Journal of the American Chemical Society, 2013, 135, 18339-18342.	13.7	112
43	Synthesis and preliminary investigations into norbornane-based amphiphiles and their self-assembly. New Journal of Chemistry, 2013, 37, 1895.	2.8	9
44	Synthesis of Tris-hydroxymethyl-Based Nitrone Derivatives with Highly Reactive Nitronyl Carbon. Journal of Organic Chemistry, 2012, 77, 938-948.	3.2	6
45	Degradation of Edible Oil during Food Processing by Ultrasound: Electron Paramagnetic Resonance, Physicochemical, and Sensory Appreciation. Journal of Agricultural and Food Chemistry, 2012, 60, 7761-7768.	5.2	93
46	Non-Ionic Amphiphilic Homopolymers: Synthesis, Solution Properties, and Biochemical Validation. Langmuir, 2012, 28, 4625-4639.	3.5	64
47	Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6733-6738.	7.1	173
48	Folding of diphtheria toxin T-domain in the presence of amphipols and fluorinated surfactants: Toward thermodynamic measurements of membrane protein folding. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1006-1012.	2.6	22
49	Nonionic Homopolymeric Amphipols: Application to Membrane Protein Folding, Cell-Free Synthesis, and Solution Nuclear Magnetic Resonance. Biochemistry, 2012, 51, 1416-1430.	2.5	86
50	Fluorinated Surfactants for Structural Studies of Membrane Proteins. Biophysical Journal, 2012, 102, 289a.	0.5	0
51	MALDI-TOF Mass Spectrometry Analysis of Amphipol-Trapped Membrane Proteins. Analytical Chemistry, 2012, 84, 6128-6135.	6.5	31
52	A diglucosylated fluorinated surfactant to handle integral membrane proteins in aqueous solution. Journal of Fluorine Chemistry, 2012, 134, 63-71.	1.7	21
53	Synthesis and Determination of Polymerization Rate Constants of Glucose-Based Monomers. Designed Monomers and Polymers, 2011, 14, 499-513.	1.6	9
54	Propyl-Ended Hemifluorinated Surfactants: Synthesis and Self-Assembling Properties. Journal of Organic Chemistry, 2011, 76, 2084-2093.	3.2	16

Grégory Durand

#	Article	IF	CITATIONS
55	Cholesterol-based α-phenyl-N-tert-butyl nitrone derivatives as antioxidants against light-induced retinal degeneration. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7405-7409.	2.2	20
56	Amphiphilic Amide Nitrones: A New Class of Protective Agents Acting as Modifiers of Mitochondrial Metabolism. Journal of Medicinal Chemistry, 2010, 53, 4849-4861.	6.4	21
57	Synthesis, physical-chemical and biological properties of amphiphilic amino acid conjugates of nitroxides. New Journal of Chemistry, 2010, 34, 1909.	2.8	4
58	Trapping and Stabilization of Integral Membrane Proteins by Hydrophobically Grafted Clucose-Based Telomers. Biomacromolecules, 2009, 10, 3317-3326.	5.4	44
59	Spin Trapping and Cytoprotective Properties of Fluorinated Amphiphilic Carrier Conjugates of Cyclic versus Linear Nitrones. Chemical Research in Toxicology, 2009, 22, 1570-1581.	3.3	22
60	Micellar and Biochemical Properties of (Hemi)Fluorinated Surfactants Are Controlled by the Size of the Polar Head. Biophysical Journal, 2009, 97, 1077-1086.	0.5	63
61	Lipophilic β-Cyclodextrin Cyclicâ ``Nitrone Conjugate: Synthesis and Spin Trapping Studies. Journal of Organic Chemistry, 2009, 74, 5369-5380.	3.2	32
62	Glucose-Based Surfactants with Hydrogenated, Fluorinated, or Hemifluorinated Tails: Synthesis and Comparative Physical-Chemical Characterization. Journal of Organic Chemistry, 2008, 73, 8142-8153.	3.2	41
63	Glucose-Based Amphiphilic Telomers Designed to Keep Membrane Proteins Soluble in Aqueous Solutions: Synthesis and Physicochemical Characterization. Langmuir, 2008, 24, 13581-13590.	3.5	42
64	Reactivity of Superoxide Radical Anion and Hydroperoxyl Radical with α-Phenyl-N-tert-butylnitrone (PBN) Derivatives. Journal of Physical Chemistry A, 2008, 112, 12498-12509.	2.5	35
65	Study of \hat{l}^2 -cyclodextrin/fluorinated trimethyl ammonium bromide surfactant inclusion complex by fluorinated surfactant ion selective electrode. Talanta, 2007, 74, 72-77.	5.5	20
66	Mixtures of Hydrogenated and Fluorinated Lactobionamide Surfactants with Cationic Surfactants: Study of Hydrogenated and Fluorinated Chains Miscibility through Potentiometric Techniques. Langmuir, 2007, 23, 11465-11474.	3.5	16
67	Fine-Tuning the Amphiphilicity:  A Crucial Parameter in the Design of Potent α-Phenyl- <i>N</i> - <i>tert</i> -butylnitrone Analogues. Journal of Medicinal Chemistry, 2007, 50, 3976-3979.	6.4	19
68	A New Amphiphilic Derivative, <i>N</i> à€{[4â€(Lactobionamido)methyl]benzylidene}― 1,1â€dimethylâ€2â€(octylsulfanyl)ethylamine <i>N</i> â€Oxide, Has a Protective Effect Against Copperâ€Induced Fulminant Hepatitis in <i>Long–Evans</i> Cinnamon Rats at an Extremely Low Concentration Compared with Its Original Form <i>α</i> â€Phenylâ€ <i>N</i> â€(<i>tert</i> â€butyl) Nitrone. Chemistry and	2.1	11
69	Biodiversity, 2007, 4, 2253-2267. Fluorinated Amphiphilic Amino Acid Derivatives as Antioxidant Carriers:  A New Class of Protective Agents. Journal of Medicinal Chemistry, 2006, 49, 2812-2820.	6.4	44
70	Lactobionamide Surfactants with Hydrogenated, Perfluorinated or Hemifluorinated Tails:Â Physical-Chemical and Biochemical Characterization. Langmuir, 2006, 22, 8881-8890.	3.5	38
71	Protection Against Reactive Oxygen Species Injuries in Rat Isolated Perfused Hearts: Effect of LPBNAH, a New Amphiphilic Spin-Trap Derived from PBN. Cardiovascular Drugs and Therapy, 2006, 20, 147-149.	2.6	9
72	Mitochondrial medicine: neuroprotection and life extension by the new amphiphilic nitrone LPBNAH1 acting as a highly potent antioxidant agent. Journal of Neurochemistry, 2005, 95, 962-973.	3.9	41

GRéGORY DURAND

#	Article	IF	CITATIONS
73	Synthesis of a new family of glycolipidic nitrones as potential antioxidant drugs for neurodegenerative disorders. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 859-862.	2.2	40
74	Synthesis and antioxidant efficiency of a new amphiphilic spin-trap derived from PBN and lipoic acid. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2673-2676.	2.2	18
75	Synthesis and Preliminary Biological Evaluations of Ionic and Nonionic Amphiphilic α-Phenyl-N-tert-butylnitrone Derivatives. Journal of Medicinal Chemistry, 2003, 46, 5230-5237.	6.4	34
76	PBN Derived Amphiphilic Spin-Traps. I/Synthesis and Study of Their Miscibility with Polyunsaturated Phospholipids. Langmuir, 2003, 19, 9699-9705.	3.5	9