
Christian Salesse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8040771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1023, 365-379.	1.4	147
2	Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers. Biochimie, 2009, 91, 718-733.	1.3	140
3	Can we produce a human corneal equivalent by tissue engineering?. Progress in Retinal and Eye Research, 2000, 19, 497-527.	7.3	117
4	Ellipsometric study of the physical states of phosphatidylcholines at the air-water interface. The Journal of Physical Chemistry, 1990, 94, 1925-1932.	2.9	114
5	Specific recognition and formation of two- dimensional streptavidin domains in monolayers: applications to molecular devices. Thin Solid Films, 1989, 180, 93-99.	0.8	89
6	Analysis of the Contribution of Saturated and Polyunsaturated Phospholipid Monolayers to the Binding of Proteins. Langmuir, 2011, 27, 1373-1379.	1.6	85
7	Measurement of Membrane Binding between Recoverin, a Calcium-Myristoyl Switch Protein, and Lipid Bilayers byAFM-Based Force Spectroscopy. Biophysical Journal, 2002, 82, 3343-3350.	0.2	71
8	Influence of the Physical State of Phospholipid Monolayers on Protein Binding. Langmuir, 2012, 28, 9680-9688.	1.6	56
9	Effects of EGF, IL-1 and their Combination on In Vitro Corneal Epithelial Wound Closure and Cell Chemotaxis. Experimental Eye Research, 1993, 57, 293-300.	1.2	53
10	Expression of the α5 Integrin Subunit Gene Promoter Is Positively Regulated by the Extracellular Matrix Component Fibronectin through the Transcription Factor Sp1 in Corneal Epithelial Cells in Vitro. Journal of Biological Chemistry, 2000, 275, 39182-39192.	1.6	51
11	Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1235, 395-405.	1.4	46
12	Structure of Rhodopsin in Monolayers at the Airâ^'Water Interface:Â a PM-IRRAS and X-Ray Reflectivity Studyâ€. Biochemistry, 2002, 41, 13424-13434.	1.2	46
13	Polarization-Modulated Infrared Spectroscopy and X-Ray Reflectivity of Photosystem II Core Complex at the Gas-Water Interface. Biophysical Journal, 1998, 75, 2888-2899.	0.2	44
14	A Spectroscopic and Epifluorescence Microscopic Study of (Hexadecanoylamino)fluorescein Aggregates at the Airâ 'Water Interface and in Langmuirâ 'Blodgett Films. Langmuir, 1997, 13, 5401-5408.	1.6	43
15	Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. Journal of Molecular Recognition, 2011, 24, 483-489.	1.1	42
16	Ellipsometric studies of rod outer segment phospholipids at the nitrogen-water interface. Thin Solid Films, 1985, 132, 83-90.	0.8	41
17	Mixed monolayers of natural and polymeric phospholipids: structural characterization by physical and enzymatic methods. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1022, 146-154.	1.4	41
18	Determination of the Contribution of the Myristoyl Group and Hydrophobic Amino Acids of Recoverin on its Dynamics of Binding to Lipid Monolayers. Biophysical Journal, 2007, 93, 2069-2082.	0.2	40

#	Article	IF	CITATIONS
19	Regulation of the Integrin Subunit α5 Gene Promoter by the Transcription Factors Sp1/Sp3 Is Influenced by the Cell Density in Rabbit Corneal Epithelial Cells. , 2003, 44, 3742.		39
20	Anisotropic Optical Constants of Bacteriorhodopsin in the Mid-Infrared: Consequence on the Determination of α-Helix Orientation. Applied Spectroscopy, 1999, 53, 1299-1304.	1.2	36
21	Monolayer Behavior of NBD-Labeled Phospholipids at the Air/Water Interface. Langmuir, 2002, 18, 5539-5550.	1.6	36
22	Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Advances in Colloid and Interface Science, 2014, 207, 223-239.	7.0	35
23	Organization, structure and activity of proteins in monolayers. Colloids and Surfaces B: Biointerfaces, 2007, 58, 73-90.	2.5	34
24	An evaluation of purity criteria for bovine rod outer segment membranes. Analytical Biochemistry, 1984, 142, 258-266.	1.1	31
25	Quenching of fluorescein-conjugated lipids by antibodies. Quantitative recognition and binding of lipid-bound haptens in biomembrane models, formation of two-dimensional protein domains and molecular dynamics simulations. Biophysical Journal, 1992, 63, 823-838.	0.2	31
26	Polarization-Modulated Infrared Reflection Absorption Spectroscopy Measurement of Phospholipid Monolayer Hydrolysis by Phospholipase C. Langmuir, 1999, 15, 6594-6597.	1.6	31
27	On the Nature of Conformational Transition in Poly(ethylene glycol) Chains Grafted onto Phospholipid Monolayers. Journal of Physical Chemistry B, 2004, 108, 10754-10764.	1.2	31
28	The behavior of membrane proteins in monolayers at the gas–water interface: comparison between photosystem II, rhodopsin and bacteriorhodopsin. Materials Science and Engineering C, 1999, 10, 147-154.	3.8	29
29	Spectroscopic, AFM, and NSOM Studies of 3D Crystallites in Mixed Langmuirâ^'Blodgett Films ofN,Nâ€~Bis(2,6-dimethylphenyl)-3,4,9,10-perylenetetracarboxylic Diimide and Stearic Acid. Langmuir, 1999, 15, 607-612.	1.6	28
30	Monitoring of phospholipid monolayer hydrolysis by phospholipase A2 by use of polarization-modulated Fourier transform infrared spectroscopy. Biophysical Chemistry, 2000, 88, 127-135.	1.5	28
31	Estimation of disk membrane lateral pressure and molecular area of rhodopsin by the measurement of its orientation at the nitrogen-water interface from an ellipsometric study. Biochemistry, 1990, 29, 4567-4575.	1.2	27
32	eSpectroscopic and Structural Properties of Valine Gramicidin A in Monolayers at the Air-Water Interface. Biophysical Journal, 2002, 83, 3558-3569.	0.2	27
33	ABCB1 identifies a subpopulation of uveal melanoma cells with high metastatic propensity. Pigment Cell and Melanoma Research, 2011, 24, 430-437.	1.5	27
34	How to gather useful and valuable information from protein binding measurements using Langmuir lipid monolayers. Advances in Colloid and Interface Science, 2017, 243, 60-76.	7.0	27
35	Influence of Molecular Structure on the Aggregating Properties of Thiacarbocyanine Dyes Adsorbed to Langmuir Films at the Airâ ⁻ 'Water Interface. Langmuir, 2000, 16, 9518-9526.	1.6	26
36	Expression of glial fibrillary acidic protein in primary cultures of human Müller cells. Experimental Eye Research, 2004, 79, 423-429.	1.2	26

#	Article	IF	CITATIONS
37	Effect of quiescence on integrin alpha5beta1 expression in human retinal pigment epithelium. Molecular Vision, 2003, 9, 473-81.	1.1	25
38	Integrin α5 expression by the ARPE-19 cell line: comparison with primary RPE cultures and effect of growth medium on the α5 gene promoter strength. Experimental Eye Research, 2004, 79, 157-165.	1.2	24
39	Synthesis of Enzymatically Stable Analogues of GDP for Binding Studies with Transducin, the G-Protein of the Visual Photoreceptor. Journal of Organic Chemistry, 1998, 63, 7244-7257.	1.7	23
40	Reversible Ca ²⁺ Switch of An Engineered Allosteric Antioxidant Selenoenzyme. Angewandte Chemie - International Edition, 2014, 53, 13536-13539.	7.2	23
41	Multiple Regulatory Elements Control the Basal Promoter Activity of the Human α4 Integrin Gene. DNA and Cell Biology, 1994, 13, 1071-1085.	0.9	22
42	Phosphatidylserine Allows Observation of the Calcium–Myristoyl Switch of Recoverin and Its Preferential Binding. Journal of the American Chemical Society, 2016, 138, 13533-13540.	6.6	21
43	Systematic analysis of the expression, solubility and purification of a passenger protein in fusion with different tags. Protein Expression and Purification, 2018, 152, 92-106.	0.6	21
44	Surface and Spectroscopic Properties of Photosystem II Core Complex at the Nitrogen/Water Interface. Langmuir, 1998, 14, 3954-3963.	1.6	20
45	Microscopic Organization of Long-Chain Rhodamine Molecules in Monolayers at the Air/Water Interface. Journal of Physical Chemistry B, 2002, 106, 4203-4213.	1.2	20
46	Binding of RPE65 Fragments to Lipid Monolayers and Identification of Its Partners by Glutathione S-Transferase Pull-Down Assays. Biochemistry, 2006, 45, 3337-3347.	1.2	20
47	Human retinal pigment epithelium secretes a phospholipase A2 and contains two novel intracellular phospholipases A2. Biochemistry and Cell Biology, 2001, 79, 1-10.	0.9	19
48	Suppression of $\hat{1}\pm 5$ gene expression is closely related to the tumorigenic properties of uveal melanoma cell lines. Pigment Cell and Melanoma Research, 2011, 24, 643-655.	1.5	19
49	Binding of a Truncated Form of Lecithin:Retinol Acyltransferase and Its N- and C-Terminal Peptides to Lipid Monolayers. Langmuir, 2012, 28, 3516-3523.	1.6	19
50	Direct evidence for the formation of a monolayer from a bilayer. An ellipsometric study at the nitrogen-water interface. Biophysical Journal, 1987, 52, 351-352.	0.2	18
51	The interaction between lipid derivatives of colchicine and tubulin: Consequences of the interaction of the alkaloid with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1468, 381-395.	1.4	18
52	The organization of poly-γ-benzyl-L-glutamate in the α-helical conformation at the air-water interface. Thin Solid Films, 1994, 242, 229-233.	0.8	17
53	Formation of Highly Oriented Domains of a Thiacarbocyanine Dye in a Monolayer at the Airâ `Water Interface. Langmuir, 2002, 18, 1641-1648.	1.6	17
54	High-Pressure Transition of a Poly(ethylene glycol)-Grafted Phospholipid Monolayer at the Air/Water Interface. Macromolecules, 2003, 36, 7227-7235.	2.2	17

#	Article	IF	CITATIONS
55	Retinol dehydrogenases: Membrane-bound enzymes for the visual function. Biochemistry and Cell Biology, 2014, 92, 510-523.	0.9	17
56	Determination of bacteriorhodopsin orientation in monolayers by infrared spectroscopy. Thin Solid Films, 1996, 284-285, 627-630.	0.8	15
57	Expression of Phospholipases A2and C in Human Corneal Epithelial Cells. , 2004, 45, 3997.		15
58	Single-step purification of myristoylated and nonmyristoylated recoverin and substrate dependence of myristoylation level. Analytical Biochemistry, 2006, 349, 25-32.	1.1	15
59	Effect of oxidation of polyunsaturated phospholipids on the binding of proteins in monolayers. Colloids and Surfaces B: Biointerfaces, 2013, 109, 109-114.	2.5	14
60	Lipid Selectivity, Orientation, and Extent of Membrane Binding of Nonacylated RP2. Biochemistry, 2015, 54, 2560-2570.	1.2	14
61	Surface Pressure Dependent Fluorescence Resonance Energy Transfer in Mixed Monolayers of Amphiphilic Coumarin and Texas Red at the Airâ~'Water Interface. Langmuir, 1997, 13, 801-807.	1.6	13
62	Secondary structure of a truncated form of lecithin retinol acyltransferase in solution and evidence for its binding and hydrolytic action in monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1324-1334.	1.4	13
63	Expression of the α5 integrin gene in corneal epithelial cells cultured on tissue-engineered human extracellular matrices. Biomaterials, 2013, 34, 6367-6376.	5.7	13
64	Ellipsometric and fluorescence microscopic investigations of a cyclam derivative at the air/water interface. Langmuir, 1993, 9, 2145-2150.	1.6	12
65	Design of Functionalized Lipids and Evidence for Their Binding to Photosystem II Core Complex by Oxygen Evolution Measurements, Atomic Force Microscopy, and Scanning Near-Field Optical Microscopy. Biophysical Journal, 2001, 81, 563-571.	0.2	12
66	Surface properties of valine-gramicidin A at the air-water interface. Thin Solid Films, 1996, 284-285, 90-93.	0.8	11
67	Study of the synergistic action of phospholipase A2 and melittin in the hydrolysis of phospholipid monolayers. Thin Solid Films, 1996, 284-285, 743-747.	0.8	11
68	Comparison between the Gene Expression Profile of Human MuÌ^ller Cells and Two Spontaneous MuÌ^ller Cell Lines. , 2007, 48, 5229.		11
69	Structure of the N-terminal segment of human retinol dehydrogenase 11 and its preferential lipid binding using model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 878-885.	1.4	11
70	Discriminating Lipid– from Protein–Calcium Binding To Understand the Interaction between Recoverin and Phosphatidylglycerol Model Membranes. Biochemistry, 2016, 55, 3481-3491.	1.2	11
71	Interactions in mixed monolayers between distearoyl-l-phosphatidylethanolamine, rod outer segment phosphatidylethanolamine and all-trans retinal. Effect of pH. Biochimica Et Biophysica Acta - Biomembranes, 1983, 730, 217-225.	1.4	9
72	Molar absorptivities of bovine retina rod outer segment phospholipids in n-hexane. Analytical Biochemistry, 1985, 151, 409-417.	1.1	9

#	Article	IF	CITATIONS
73	In Situ Characterization of Functional Purple Membrane Monolayers at the Airâ^'Water Interface. Langmuir, 2004, 20, 934-940.	1.6	9
74	Modeling membrane targeting: interaction and recognition of proteins with model biomembrane systems. Journal of Controlled Release, 1992, 19, 201-218.	4.8	8
75	Presence of a Light-independent Phospholipase A2 in Bovine Retina but Not in Rod Outer Segments. Journal of Biological Chemistry, 1996, 271, 19209-19218.	1.6	8
76	Characterization of Two Spontaneously Generated Human MuÌ^ller Cell Lines from Donors with Type 1 and Type 2 Diabetes. , 2007, 48, 874.		8
77	Enzymatic activity of Lecithin:retinol acyltransferase: A thermostable and highly active enzyme with a likely mode of interfacial activation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1128-1136.	1.1	8
78	Structure and Binding of the C-Terminal Segment of R9AP to Lipid Monolayers. Langmuir, 2015, 31, 1967-1979.	1.6	8
79	Identification of an alternative translation initiation site in the sequence of the commonly used Glutathione S-Transferase tag. Journal of Biotechnology, 2018, 286, 14-16.	1.9	8
80	Determination of the depth of penetration of the $\hat{I}\pm$ subunit of retinal G protein in membranes: A spectroscopic study. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1370, 199-206.	1.4	7
81	A strategy for purifying glutathione S-transferase in the presence of sodium dodecyl sulfate. BioTechniques, 2011, 51, 193-4.	0.8	7
82	The Thermal Stability of Recoverin Depends on Calcium Binding and Its Myristoyl Moiety As Revealed by Infrared Spectroscopy. Biochemistry, 2014, 53, 48-56.	1.2	7
83	Characterization of the human α9 integrin subunit gene: Promoter analysis and transcriptional regulation in ocular cells. Experimental Eye Research, 2015, 135, 146-163.	1.2	7
84	Dengue fusion peptide in Langmuir monolayers: A binding parameter study. Biophysical Chemistry, 2021, 271, 106553.	1.5	7
85	Functional Impact of Collagens on the Activity Directed by the Promoter of theα5Integrin Subunit Gene in Corneal Epithelial Cells. , 2015, 56, 6217.		6
86	Membrane fluidity is a driving force for recoverin myristoyl immobilization in zwitterionic lipids. Biochemical and Biophysical Research Communications, 2017, 490, 1268-1273.	1.0	6
87	The binding of G-protein to rod outer segment phospholipids at the nitrogen–water interface. Biochemistry and Cell Biology, 1989, 67, 422-427.	0.9	5
88	Bovine retinal pigment epithelium contains novel types of phospholipase A2. Biochemical Journal, 1997, 327, 455-460.	1.7	5
89	Phospholipases A2 of rod outer segment-free bovine retinae are different from well-known phospholipases A2. Lipids and Lipid Metabolism, 1998, 1391, 169-180.	2.6	5
90	Mixing Behavior of a Poly(ethylene glycol)-Grafted Phospholipid in Monolayers at the Air/Water Interface. Langmuir, 2008, 24, 13019-13029.	1.6	5

#	Article	IF	CITATIONS
91	Identification of differentially expressed genes in uveal melanoma using suppressive subtractive hybridization. Molecular Vision, 2011, 17, 1324-33.	1.1	5
92	Evaluation of Membrane Penetration Depth Utilizing Fluorescence Quenching by Doxylated Fatty Acids. Langmuir, 1998, 14, 4643-4649.	1.6	4
93	Novel approaches to probe the binding of recoverin to membranes. European Biophysics Journal, 2018, 47, 679-691.	1.2	4
94	The hydrophobic region of the <i>Leishmania</i> peroxin 14: requirements for association with a glycosome mimetic membrane. Biochemical Journal, 2018, 475, 511-529.	1.7	4
95	Phospholipid monolayer hydrolysis by cytosolic phospholipase A2 gamma and lecithin retinol acyl transferase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 147-150.	2.3	3
96	Lecithin retinol acyltransferase and its S175R mutant have a similar secondary structure content and maximum insertion pressure but different enzyme activities. Experimental Eye Research, 2011, 93, 778-781.	1.2	3
97	Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183605.	1.4	3
98	The effect of pH on the interactions in mixed monolayers between phosphatidylserine and all-Trans retinal. Journal of Colloid and Interface Science, 1988, 123, 1-7.	5.0	2
99	Lipid contamination of disks depends on rod outer-segment purity. Experimental Eye Research, 1988, 46, 285-287.	1.2	2
100	Identification of genes specifically expressed by human Müller cells by use of subtractive hybridization. Molecular Vision, 2007, 13, 1828-41.	1.1	2
101	Optical measurements of an acylated azacrown at the air-water interface. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 97-101.	0.6	1
102	Polymorphism of the 1-Palmitoyl-2-arachidonoyl-phosphatidyl-ethanolamine/Dimyristoyl-phosphatidylmethanol Mixture, a Phospholipase A2 Substrate. Biochemical and Biophysical Research Communications, 1998, 251, 879-882.	1.0	1
103	Probing the transducin nucleotide binding site with GDP analogues. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1185-1188.	1.0	1
104	Highly cohesive monolayers of lipid derivatives of colchicine: a dynamics study. Chemistry and Physics of Lipids, 2002, 114, 99-102.	1.5	1
105	Comparison between the enzymatic activity, structure and substrate binding of mouse and human lecithin retinol acyltransferase. Biochemical and Biophysical Research Communications, 2019, 519, 832-837.	1.0	1
106	Structural information and membrane binding of truncated RGS9-1 Anchor Protein and its C-terminal hydrophobic segment. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183566.	1.4	1
107	Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112315.	2.5	1
108	How To Decipher Protein and Peptide Selectivity for Lipids in Monolayers. ACS Symposium Series, 2015, , 109-128.	0.5	0