

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8040726/publications.pdf Version: 2024-02-01

DENCL

#	Article	IF	CITATIONS
1	Effect of Thaw Depth on Nitrogen and Phosphorus Loss in Runoff of Loess Slope. Sustainability, 2022, 14, 1560.	3.2	3
2	Effects of Different Crop Root Systems on Soil Detachment by Concentrated Flow on the Loess Plateau in China. Water (Switzerland), 2022, 14, 772.	2.7	5
3	Impacts and Projections of Land Use and Demographic Changes on Ecosystem Services: A Case Study in the Guanzhong Region, China. Sustainability, 2022, 14, 3003.	3.2	5
4	Study on Infiltration and Soil Moisture Characteristics of a Sand-Covered Slope. Water (Switzerland), 2022, 14, 1043.	2.7	0
5	Interactive Effects of Rainfall Intensity and Initial Thaw Depth on Slope Erosion. Sustainability, 2022, 14, 3172.	3.2	5
6	Heavy Metal Content and Pollution Assessment in Typical Check Dam Sediment in a Watershed of Loess Plateau, China. Sustainability, 2022, 14, 8597.	3.2	2
7	High Heterogeneity of Root Carbon Allocation Affects Root Turnover Rate and Production of Bothriochloa ischaemum Under Drought Stress. Journal of Plant Growth Regulation, 2021, 40, 226-239.	5.1	6
8	Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China. Sustainability, 2021, 13, 10637.	3.2	7
9	Vegetation dynamics and their relationships with climatic factors in the Qinling Mountains of China. Ecological Indicators, 2020, 108, 105719.	6.3	71
10	Root respiration and belowground carbon allocation respond to drought stress in a perennial grass (Bothriochloa ischaemum). Catena, 2020, 188, 104449.	5.0	22
11	Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau, China. Science of the Total Environment, 2020, 707, 135507.	8.0	43
12	Effects of ecological construction on the transformation of different water types on Loess Plateau, China. Ecological Engineering, 2020, 144, 105642.	3.6	14
13	Increased soil aggregate stability is strongly correlated with root and soil properties along a gradient of secondary succession on the Loess Plateau. Ecological Engineering, 2020, 143, 105671.	3.6	61
14	Slope Erosion and Hydraulics during Thawing of the Sand-Covered Loess Plateau. Water (Switzerland), 2020, 12, 2461.	2.7	6
15	Heterogeneity in short-term allocation of carbon to roots of Pinus tabuliformis seedlings and root respiration under drought stress. Plant and Soil, 2020, 452, 359-378.	3.7	10
16	Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma, 2019, 351, 188-196.	5.1	93
17	Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau, China. Catena, 2019, 181, 104095.	5.0	26
18	Probability prediction of peak breakâ€up water level through vine copulas. Hydrological Processes, 2019, 33, 962-977.	2.6	12

Peng Li

#	Article	IF	CITATIONS
19	The Impact of Vegetation Successional Status on Slope Runoff Erosion in the Loess Plateau of China. Water (Switzerland), 2019, 11, 2614.	2.7	17
20	Analysis of nonstationarity in low flow in the Loess Plateau of China. Hydrological Processes, 2018, 32, 1844-1857.	2.6	5
21	Analyzing the Impacts of Climatic and Physiographic Factors on Low Flow Distributions. Water Resources Management, 2018, 32, 881-896.	3.9	4
22	An implicit friction source term treatment for overland flow simulation using shallow water flow model. Journal of Hydrology, 2018, 564, 357-366.	5.4	34
23	Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma, 2017, 296, 10-17.	5.1	107