Xiaoming Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/8040440/xiaoming-li-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

77	12,211	41	78
papers	citations	h-index	g-index
78	14,258 ext. citations	10.6	6.79
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
77	Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). <i>Advanced Materials</i> , 2015 , 27, 7162-7	24	1975
76	CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2016 , 26, 2435-2445	15.6	1548
75	All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. <i>Advanced Materials</i> , 2015 , 27, 7101-8	24	919
74	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. <i>Advanced Functional Materials</i> , 2015 , 25, 4929-4947	15.6	885
73	Monolayer and Few-Layer All-Inorganic Perovskites as a New Family of Two-Dimensional Semiconductors for Printable Optoelectronic Devices. <i>Advanced Materials</i> , 2016 , 28, 4861-9	24	533
7 ²	Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. <i>Scientific Reports</i> , 2015 , 4,	4.9	447
71	All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. <i>Small</i> , 2017 , 13, 1603996	11	438
70	Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. <i>Nano Letters</i> , 2016 , 16, 448-53	11.5	409
69	In Situ Passivation of PbBr64IDctahedra toward Blue Luminescent CsPbBr3 Nanoplatelets with Near 100% Absolute Quantum Yield. <i>ACS Energy Letters</i> , 2018 , 3, 2030-2037	20.1	281
68	Improving All-Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect. <i>Small</i> , 2016 , 12, 5622-5632	11	271
67	Healing All-Inorganic Perovskite Films via Recyclable Dissolution R ecyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. <i>Advanced Functional Materials</i> , 2016 , 26, 5903-5912	15.6	253
66	Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity. <i>ACS Nano</i> , 2017 , 11, 2015-2023	16.7	222
65	State of the Art and Prospects for Halide Perovskite Nanocrystals. <i>ACS Nano</i> , 2021 , 15, 10775-10981	16.7	222
64	Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing. <i>Advanced Materials</i> , 2017 , 29, 1701185	24	215
63	Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1759-6	54 ^{16.4}	213
62	Two-Dimensional, Porous Nickel-Cobalt Sulfide for High-Performance Asymmetric Supercapacitors. <i>ACS Applied Materials & District Supercapacitors</i> , 7, 19316-23	9.5	210
61	CsPbBr Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. <i>Advanced Materials</i> , 2019 , 31, e1900767	24	189

(2015-2017)

60	Solution-Processed Low Threshold Vertical Cavity Surface Emitting Lasers from All-Inorganic Perovskite Nanocrystals. <i>Advanced Functional Materials</i> , 2017 , 27, 1605088	15.6	184
59	Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2016 , 8, 2680-7	9.5	173
58	Surface Chemistry of All Inorganic Halide Perovskite Nanocrystals: Passivation Mechanism and Stability. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701662	4.6	170
57	Cu-N dopants boost electron transfer and photooxidation reactions of carbon dots. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6540-4	16.4	169
56	Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. <i>NPG Asia Materials</i> , 2015 , 7, e165-e165	10.3	156
55	Boosting Two-Dimensional MoS/CsPbBr Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation. <i>ACS Applied Materials & District Separation</i> (1980) 10, 2801-2809	9.5	140
54	Progress of Carbon Quantum Dots in Photocatalysis Applications. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 457-472	3.1	121
53	Remedying Defects in Carbon Nitride To Improve both Photooxidation and H2 Generation Efficiencies. <i>ACS Catalysis</i> , 2016 , 6, 3365-3371	13.1	115
52	Solution-Grown CsPbBr /Cs PbBr Perovskite Nanocomposites: Toward Temperature-Insensitive Optical Gain. <i>Small</i> , 2017 , 13, 1701587	11	110
51	Low-Voltage Photodetectors with High Responsivity Based on Solution-Processed Micrometer-Scale All-Inorganic Perovskite Nanoplatelets. <i>Small</i> , 2017 , 13, 1700364	11	109
50	Highly Efficient Carbon Dots with Reversibly Switchable Green-Red Emissions for Trichromatic White Light-Emitting Diodes. <i>ACS Applied Materials & Emissions for Trichromatic </i>	9.5	104
49	Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 673-681	20.1	100
48	Photon Driven Transformation of Cesium Lead Halide Perovskites from Few-Monolayer Nanoplatelets to Bulk Phase. <i>Advanced Materials</i> , 2016 , 28, 10637-10643	24	100
47	Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. <i>Nano Research</i> , 2017 , 10, 1584-1594	10	95
46	Surface Halogen Compensation for Robust Performance Enhancements of CsPbX3 Perovskite Quantum Dots. <i>Advanced Optical Materials</i> , 2019 , 7, 1900276	8.1	83
45	Space-Confined Growth of CsPbBr3 Film Achieving Photodetectors with High Performance in All Figures of Merit. <i>Advanced Functional Materials</i> , 2018 , 28, 1804394	15.6	81
44	Approaching the Theoretical Capacity of Li3VO4 via Electrochemical Reconstruction. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500340	4.6	75
43	Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. <i>RSC Advances</i> , 2015 , 5, 79738-79745	3.7	67

42	Ternary Oxide Nanocrystals: Universal Laser-Hydrothermal Synthesis, Optoelectronic and Electrochemical Applications. <i>Advanced Functional Materials</i> , 2016 , 26, 5051-5060	15.6	50
41	Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. <i>New Journal of Chemistry</i> , 2018 , 42, 4603-4611	3.6	48
40	Quantum Dots: CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes (Adv. Funct. Mater. 15/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 2584-2584	15.6	48
39	Welding Perovskite Nanowires for Stable, Sensitive, Flexible Photodetectors. ACS Nano, 2020, 14, 2777	-2787	46
38	Highly stable and flexible photodetector arrays based on low dimensional CsPbBr3 microcrystals and on-paper pencil-drawn electrodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7441-7445	7.1	45
37	Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. <i>Communications Physics</i> , 2018 , 1,	5.4	43
36	Interfacial-Tunneling-Effect-Enhanced CsPbBr3 Photodetectors Featuring High Detectivity and Stability. <i>Advanced Functional Materials</i> , 2019 , 29, 1904461	15.6	37
35	Heterogeneous Nucleation toward Polar-Solvent-Free, Fast, and One-Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800010	4.6	35
34	Controlling oxygen vacancies and properties of ZnO. Current Applied Physics, 2014, 14, 521-527	2.6	34
33	Cation Exchange-Induced Dimensionality Construction: From Monolayered to Multilayered 2D Single Crystal Halide Perovskites. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700441	4.6	34
32	All-Perovskite Integrated X-Ray Detector with Ultrahigh Sensitivity. <i>Advanced Optical Materials</i> , 2020 , 8, 2000273	8.1	33
31	Simple and Fast Patterning Process by Laser Direct Writing for Perovskite Quantum Dots. <i>Advanced Materials Technologies</i> , 2017 , 2, 1700132	6.8	32
30	Strong room-temperature ferromagnetism of pure ZnO nanostructure arrays via colloidal template. Journal of Materials Chemistry C, 2013 , 1, 6807	7.1	30
29	Mn induced significant improvement and robust stability of radioluminescence in CsCuI for high-performance nuclear battery. <i>Nature Communications</i> , 2021 , 12, 3879	17.4	27
28	Quantum confinement effect of two-dimensional all-inorganic halide perovskites. <i>Science China Materials</i> , 2017 , 60, 811-818	7.1	26
27	Lead-Free Halide Double Perovskites: Structure, Luminescence, and Applications. <i>Small Structures</i> , 2021 , 2, 2000071	8.7	25
26	Nonlinear Optics in Lead Halide Perovskites: Mechanisms and Applications. ACS Photonics, 2021, 8, 113-	124	24
25	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr3 Single Crystal. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 10564-10570	3.8	23

(2021-2017)

Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application. <i>Nanoscale</i> , 2017 , 10, 359-365	7.7	21	
An insight into defect relaxation in metastable ZnO reflected by a unique luminescence and Raman evolutions. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 19637-42	3.6	17	
Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals. <i>Scientific Reports</i> , 2016 , 6, 28131	4.9	12	
Synthesis of single CsPbBr3@SiO2 coreBhell particles via surface activation. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 17403-17409	7.1	12	
Overcoming the Anisotropic Growth Limitations of Free-Standing Single-Crystal Halide Perovskite Films. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2629-2636	16.4	12	
Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. <i>ACS Photonics</i> , 2018 , 5, 4504-4512	6.3	12	
MgZnO Nanocrystals: Mechanism for Dopant-Stimulated Self-Assembly. Small, 2015, 11, 5097-104	11	11	
Oriented Perovskite Growth Regulation Enables Sensitive Broadband Detection and Imaging of Polarized Photons Covering 300-1050[hm. <i>Advanced Materials</i> , 2021 , 33, e2003852	24	11	
Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites. <i>Applied Physics Letters</i> , 2019 , 115, 111103	3.4	10	
In Situ Fabrication of CsCuI: Tl Nanocrystal Films for High-Resolution and Ultrastable X-ray Imaging <i>Journal of Physical Chemistry Letters</i> , 2022 , 2862-2870	6.4	10	
Amplifying Surface Energy Difference toward Anisotropic Growth of All-Inorganic Perovskite Single-Crystal Wires for Highly Sensitive Photodetector. <i>Advanced Functional Materials</i> , 2021 , 31, 21019	65.6	9	
Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3159-3165	6.4	8	
Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8969-8974	7.1	7	
In situ electron beam irradiation-driven formation of quantum dots. RSC Advances, 2015, 5, 25717-2572	23.7	5	
One-pot synthesis of Cs3Cu2I5 nanocrystals based on thermodynamic equilibrium. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6152-6159	7.8	5	
Strong Polarized Photoluminescence CsPbBr Nanowire Composite Films for UV Spectral Conversion Polarization Photodetector Enhancement. <i>ACS Applied Materials & Description</i> 13, 36147-36156	9.5	5	
Multiexciton Generation in Semiconductor Nanocrystals: A Potential Avenue Toward Efficient Solar Cells. <i>Science of Advanced Materials</i> , 2013 , 5, 1585-1595	2.3	4	
Efficient, Stable, and Tunable Cold/Warm White Light from Lead-Free Halide Double Perovskites Cs2Zr1-xTexCl6. <i>Advanced Optical Materials</i> , 2021 , 9, 2100815	8.1	4	
	characteristics towards photo-communication encryption application. <i>Nanoscale</i> , 2017, 10, 359-365 An insight into defect relaxation in metastable ZnO reflected by a unique luminescence and Raman evolutions. <i>Physical Chemistry Chemical Physics</i> , 2015, 17, 19637-42 Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals. <i>Scientific Reports</i> , 2016, 6, 28131 Synthesis of single CspbBr3@SiO2 coreshell particles via surface activation. <i>Journal of Materials Chemistry C</i> , 2020, 8, 17403-17409 Overcoming the Anisotropic Growth Limitations of Free-Standing Single-Crystal Halide Perovskite Films. <i>Angewandte Chemie - International Edition</i> , 2021, 60, 2629-2636 Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. <i>ACS Photonics</i> , 2018, 5, 4504-4512 MgZnO Nanocrystals: Mechanism for Dopant-Stimulated Self-Assembly. <i>Small</i> , 2015, 11, 5097-104 Oriented Perovskite Growth Regulation Enables Sensitive Broadband Detection and Imaging of Polarized Photons Covering 300-1050 hm. <i>Advanced Materials</i> , 2021, 33, e2003852 Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites. <i>Applied Physics Letters</i> , 2019, 115, 111103 In Situ Fabrication of CsCut: TI Nanocrystal Films for High-Resolution and Ultrastable X-ray Imaging. <i>Journal of Physical Chemistry Letters</i> , 2022, 2862-2870 Amplifying Surface Energy Difference toward Anisotropic Growth of All-Inorganic Perovskite Single-Crystal Wires for Highly Sensitive Photodetector. <i>Advanced Functional Materials</i> , 2021, 31, 21015 Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation. <i>Journal of Physical Chemistry Letters</i> , 2020, 11, 3159-3165 Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. <i>Journal of Materials Chemistry C</i> , 2019, 7, 8969-8974 In situ electron beam irradiation-driven formation of quantum dots. <i>RSC Advances</i> , 2015, 5, 25717-2572 One-pot synthesis of Cs3Cu215 nanocrystals based on thermodynamic equilibriu	characteristics towards photo-communication encryption application. Nanoscale, 2017, 10, 359-365 77 An insight into defect relaxation in metastable ZnO reflected by a unique luminescence and Raman evolutions. Physical Chemistry Chemical Physics, 2015, 17, 19637-42 49 Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals. Scientific Reports, 2016 6, 28131 49 Synthesis of single CsPbBr3@SiO2 coreshell particles via surface activation. Journal of Materials chemistry C, 2020, 8, 17403-17409 7-1 Overcoming the Anisotropic Growth Limitations of Free-Standing Single-Crystal Halide Perovskite Films. Angewandte Chemie - International Edition, 2021, 60, 2629-2636 16-4 Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512 6-3 MgZnO Nanocrystals: Mechanism for Dopant-Stimulated Self-Assembly. Small, 2015, 11, 5097-104 11 Oriented Perovskite Growth Regulation Enables Sensitive Broadband Detection and Imaging of Polarized Photons Covering 300-1050lm. Advanced Materials, 2021, 33, e2003852 2-4 Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites. Applied Physics Letters, 2019, 115, 111103 3-4 In Situ Fabrication of CsCul: TI Nanocrystal Films for High-Resolution and Ultrastable X-ray Imaging. 6-4 Amplifying Surface Energy Difference toward Anisotropic Growth of All-Inorganic Perovskite Single-Crystal Wires for Highly Sensitive Photodetector. Advanced Functional Materials, 2021, 31, 2101965 6 Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation. Journal of Physical Chemistry Letters, 2020, 11, 3159-3165 6-4 Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. Journal of Materials Chemistry Frontiers, 2021, 5, 6152-6159 5 Tone-pot synthesis of Cs3Cu2Is nanocrystals based on thermodynamic equilibrium. Materials Chemistry Frontiers, 2021, 5, 6152-6159 5 Strong Polarized Photoduminescence CsPbBr Nanowire Composite Films for UV Sp	characteristics towards photo-communication encryption application. Nanoscale, 2017, 10, 359-365 77 21 An insight into defect relaxation in metastable ZnO reflected by a unique luminescence and Raman evolutions. Physical Chemistry Chemical Physics, 2015, 17, 19637-42 31 Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals. Scientific Reports, 2016 49 12 Synthesis of single CsPbBr3@SiO2 corethell particles via surface activation. Journal of Materials Chemistry C, 2020, 8, 17403-17409 7.1 12 Overcoming the Anisotropic Growth Limitations of Free-Standing Single-Crystal Halide Perovskite Films. Angewandte Chemie - International Edition, 2021, 60, 2629-2636 16. 16. 12 Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512 17. 11 MgZnO Nanocrystals: Mechanism for Dopant-Stimulated Self-Assembly. Small, 2015, 11, 5097-104 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.

6	Single-Solvent, Ligand-Free, Gram-Scale Synthesis of Cs4PbBr6 Perovskite Solids with Robust Green Photoluminescence. <i>ChemNanoMat</i> , 2020 , 6, 258-266	3.5	4
5	Armor-like passivated CsPbBr3 quantum dots: boosted stability with hand-in-hand ligands and enhanced performance of nuclear batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 8772-8781	13	4
4	Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites. <i>Journal of Semiconductors</i> , 2020 , 41, 122501	2.3	2
3	Polarization improvement of CsPbClBr quantum dot film by laser direct writing technology. <i>Optics Letters</i> , 2021 , 46, 777-780	3	2
2	Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission. <i>Nano Research</i> ,1	10	2
1	Micro-patterned photoalignment of CsPbBr nanowires with liquid crystal molecule composite film for polarized emission. <i>Nanoscale</i> , 2021 , 13, 14980-14986	7.7	Ο