List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8040084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The opportunistic marine pathogen <i>Vibrio parahaemolyticus</i> becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10798-10803.	7.1	427
2	Structure, mechanism and function of prenyltransferases. FEBS Journal, 2002, 269, 3339-3354.	0.2	382
3	Structural insight into catalytic mechanism of PET hydrolase. Nature Communications, 2017, 8, 2106.	12.8	309
4	Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10022-10027.	7.1	173
5	Crystal Structures of Undecaprenyl Pyrophosphate Synthase in Complex with Magnesium, Isopentenyl Pyrophosphate, and Farnesyl Thiopyrophosphate. Journal of Biological Chemistry, 2005, 280, 20762-20774.	3.4	115
6	Crystal Structure of Yeast Cytosine Deaminase. Journal of Biological Chemistry, 2003, 278, 19111-19117.	3.4	113
7	Structure and Mechanism of Helicobacter pylori Fucosyltransferase. Journal of Biological Chemistry, 2007, 282, 9973-9982.	3.4	113
8	Structural studies reveal the molecular mechanism of <scp>PET</scp> ase. FEBS Journal, 2018, 285, 3717-3723.	4.7	112
9	Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1438-1446.	7.1	94
10	Mechanism of Product Chain Length Determination and the Role of a Flexible Loop in Escherichia coliUndecaprenyl-pyrophosphate Synthase Catalysis. Journal of Biological Chemistry, 2001, 276, 47474-47482.	3.4	90
11	The Refined Crystal Structure of an Eel Pout Type III Antifreeze Protein RD1 at 0.62-Ã Resolution Reveals Structural Microheterogeneity of Protein and Solvation. Biophysical Journal, 2003, 84, 1228-1237.	0.5	76
12	Squalene Synthase As a Target for Chagas Disease Therapeutics. PLoS Pathogens, 2014, 10, e1004114.	4.7	64
13	Structural Analysis of a Glycoside Hydrolase Family 11 Xylanase from Neocallimastix patriciarum. Journal of Biological Chemistry, 2014, 289, 11020-11028.	3.4	64
14	Catalytic Mechanism Revealed by the Crystal Structure of Undecaprenyl Pyrophosphate Synthase in Complex with Sulfate, Magnesium, and Triton. Journal of Biological Chemistry, 2003, 278, 29298-29307.	3.4	57
15	Structure of human erythrocyte catalase. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 241-245.	2.5	55
16	Dietary Flavonoids Luteolin and Quercetin Inhibit Migration and Invasion of Squamous Carcinoma through Reduction of Src/Stat3/S100A7 Signaling. Antioxidants, 2019, 8, 557.	5.1	55
17	Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies. Protein Science, 2004, 13, 971-978.	7.6	54
18	Structural basis for fragmenting the exopolysaccharide of Acinetobacter baumannii by bacteriophage ΦAB6 tailspike protein. Scientific Reports, 2017, 7, 42711.	3.3	49

#	Article	IF	CITATIONS
19	Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1832-1840.	2.3	47
20	Structural and Functional Analysis of Bacillus subtilis YisP Reveals a Role of Its Product in Biofilm Production. Chemistry and Biology, 2014, 21, 1557-1563.	6.0	44
21	Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum. Scientific Reports, 2014, 4, 6214.	3.3	44
22	Phospholipases A2 from Callosellasma rhodostoma venom gland. FEBS Journal, 2000, 267, 6684-6691.	0.2	43
23	Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. Journal of Biotechnology, 2014, 175, 1-6.	3.8	43
24	Structural insights into the catalytic mechanism of human squalene synthase. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 231-241.	2.5	40
25	Improving the catalytic performance of a GH11 xylanase by rational protein engineering. Applied Microbiology and Biotechnology, 2015, 99, 9503-9510.	3.6	40
26	Structure and Inhibition of Tuberculosinol Synthase and Decaprenyl Diphosphate Synthase from <i>Mycobacterium tuberculosis</i> . Journal of the American Chemical Society, 2014, 136, 2892-2896.	13.7	37
27	Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 663-669.	2.3	36
28	Enhanced Î \pm -Zearalenol Hydrolyzing Activity of a Mycoestrogen-Detoxifying Lactonase by Structure-Based Engineering. ACS Catalysis, 2016, 6, 7657-7663.	11.2	36
29	Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nature Communications, 2020, 11, 2676.	12.8	35
30	Structural basis of polyethylene glycol recognition by antibody. Journal of Biomedical Science, 2020, 27, 12.	7.0	34
31	Crystal Structure of a Mycoestrogen-Detoxifying Lactonase from <i>Rhinocladiella mackenziei</i> : Molecular Insight into ZHD Substrate Selectivity. ACS Catalysis, 2018, 8, 4294-4298.	11.2	33
32	Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Research, 2014, 42, 1354-1364.	14.5	32
33	Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability. Journal of Biotechnology, 2014, 189, 175-182.	3.8	32
34	Structure and Function of a "Headâ€ŧoâ€Middle―Prenyltransferase: Lavandulyl Diphosphate Synthase. Angewandte Chemie - International Edition, 2016, 55, 4721-4724.	13.8	32
35	Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis. Scientific Reports, 2016, 6, 23274.	3.3	32
36	Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. Journal of Structural Biology, 2016, 193, 206-211.	2.8	32

#	Article	IF	CITATIONS
37	The T4 Phage DNA Mimic Protein Arn Inhibits the DNA Binding Activity of the Bacterial Histone-like Protein H-NS. Journal of Biological Chemistry, 2014, 289, 27046-27054.	3.4	28
38	Crystal Structure Analysis of the Repair of Iron Centers Protein YtfE and Its Interaction with NO. Chemistry - A European Journal, 2016, 22, 9768-9776.	3.3	28
39	Structural Insights to the Heterotetrameric Interaction between the Vibrio parahaemolyticus PirAvp and PirBvp Toxins and Activation of the Cry-Like Pore-Forming Domain. Toxins, 2019, 11, 233.	3.4	26
40	Current Progresses in Phytase Research: Threeâ€Dimensional Structure and Protein Engineering. ChemBioEng Reviews, 2015, 2, 76-86.	4.4	24
41	"Headâ€ŧoâ€Middle―and "Headâ€ŧoâ€Tail― <i>cis</i> â€Prenyl Transferases: Structure of Isosesquilavar Diphosphate Synthase. Angewandte Chemie - International Edition, 2018, 57, 683-687.	ndulyl	24
42	Structure, Function, and Inhibition of <i>Staphylococcus aureus</i> Heptaprenyl Diphosphate Synthase. ChemMedChem, 2016, 11, 1915-1923.	3.2	23
43	Characterization and crystal structure of a thermostable glycoside hydrolase family 45 1,4-β-endoglucanase from Thielavia terrestris. Enzyme and Microbial Technology, 2017, 99, 32-37.	3.2	23
44	Crystal Structure and Potential Head-to-Middle Condensation Function of a <i>Z</i> , <i>Z</i> -Farnesyl Diphosphate Synthase. ACS Omega, 2017, 2, 930-936.	3.5	23
45	Structures of Iridoid Synthase from <i>Cantharanthus roseus</i> with Bound NAD ⁺ , NADPH, or NAD ⁺ /10â€Oxogeranial: Reaction Mechanisms. Angewandte Chemie - International Edition, 2015, 54, 15478-15482.	13.8	21
46	Structures of human MST3 kinase in complex with adenine, ADP and Mn ²⁺ . Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 145-154.	2.5	20
47	Distinct structural features of Rex-family repressors to sense redox levels in anaerobes and aerobes. Journal of Structural Biology, 2014, 188, 195-204.	2.8	20
48	Structural and mutagenetic analyses of a 1,3–1,4-β-glucanase from Paecilomyces thermophila. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 366-373.	2.3	20
49	Functional and structural analyses of a 1,4-β-endoglucanase from Ganoderma lucidum. Enzyme and Microbial Technology, 2016, 86, 67-74.	3.2	20
50	Crystal structure and functional implication of bacterial STING. Nature Communications, 2022, 13, 26.	12.8	20
51	Moenomycin Biosynthesis: Structure and Mechanism of Action of the Prenyltransferase MoeN5. Angewandte Chemie - International Edition, 2016, 55, 4716-4720.	13.8	19
52	Catalytic Role of Conserved Asparagine, Clutamine, Serine, and Tyrosine Residues in Isoprenoid Biosynthesis Enzymes. ACS Catalysis, 2018, 8, 4299-4312.	11.2	19
53	Structural insights to heterodimeric cis-prenyltransferases through yeast dehydrodolichyl diphosphate synthase subunit Nus1. Biochemical and Biophysical Research Communications, 2019, 515, 621-626.	2.1	19
54	Structure of an antibiotic-synthesizing UDP-glucuronate 4-epimerase MoeE5 in complex with substrate. Biochemical and Biophysical Research Communications, 2020, 521, 31-36.	2.1	19

#	Article	IF	CITATIONS
55	Crystal structure of vespid phospholipase A1 reveals insights into the mechanism for cause of membrane dysfunction. Insect Biochemistry and Molecular Biology, 2016, 68, 79-88.	2.7	18
56	Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and <scp>MADS</scp> transcription factors. Plant Journal, 2019, 100, 706-719.	5.7	16
57	Structure and mechanism of an antibiotics-synthesizing 3-hydroxykynurenine C-methyltransferase. Scientific Reports, 2015, 5, 10100.	3.3	15
58	Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Antiparasitic Drug Targets. ACS Chemical Biology, 2016, 11, 1362-1371.	3.4	15
59	Enzymatic characterization and crystal structure analysis of Chlamydomonas reinhardtii dehydroascorbate reductase and their implications for oxidative stress. Plant Physiology and Biochemistry, 2017, 120, 144-155.	5.8	15
60	Crystal structure of LepI, a multifunctional SAM-dependent enzyme which catalyzes pericyclic reactions in leporin biosynthesis. Organic and Biomolecular Chemistry, 2019, 17, 2070-2076.	2.8	15
61	Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase. Nucleic Acids Research, 2016, 44, 4440-4449.	14.5	14
62	Versatile <i>cis</i> -isoprenyl Diphosphate Synthase Superfamily Members in Catalyzing Carbon–Carbon Bond Formation. ACS Catalysis, 2020, 10, 4717-4725.	11.2	14
63	Structures of the hyperthermophilic chromosomal protein Sac7d in complex with DNA decamers. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1381-1387.	2.5	13
64	Structural analyses and yeast production of the β-1,3-1,4-glucanase catalytic module encoded by the licB gene of Clostridium thermocellum. Enzyme and Microbial Technology, 2015, 71, 1-7.	3.2	13
65	An Effective Neutralizing Antibody Against Influenza Virus H1N1 from Human B Cells. Scientific Reports, 2019, 9, 4546.	3.3	13
66	NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius. Scientific Reports, 2018, 8, 7176.	3.3	12
67	Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase. Journal of the American Chemical Society, 2019, 141, 6136-6140.	13.7	11
68	The tetrameric structure of sialic acid–synthesizing UDP-GlcNAc 2-epimerase from Acinetobacter baumannii: A comparative study with human GNE. Journal of Biological Chemistry, 2018, 293, 10119-10127.	3.4	10
69	Structure and Function of a "Headâ€ŧoâ€Middle―Prenyltransferase: Lavandulyl Diphosphate Synthase. Angewandte Chemie, 2016, 128, 4799-4802.	2.0	9
70	The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 15060-15064.	13.8	9
71	Reduction in MnSOD promotes the migration and invasion of squamous carcinoma cells. International Journal of Oncology, 2019, 54, 1639-1650.	3.3	9
72	Crystal structure and functional implication of a bacterial cyclic AMP–AMP–GMP synthetase. Nucleic Acids Research, 2021, 49, 4725-4737.	14.5	9

#	Article	lF	CITATIONS
73	Substrate-analogue complex structure of <i>Mycobacterium tuberculosis</i> decaprenyl diphosphate synthase. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 212-216.	0.8	9
74	Structural and biological insights into Klebsiella pneumoniae surface polysaccharide degradation by a bacteriophage K1 lyase: implications for clinical use. Journal of Biomedical Science, 2022, 29, 9.	7.0	9
75	Crystal structures of S-adenosylhomocysteine hydrolase from the thermophilic bacterium Thermotoga maritima. Journal of Structural Biology, 2015, 190, 135-142.	2.8	8
76	The monomeric form of Neisseria DNA mimic protein DMP19 prevents DNA from binding to the histone-like HU protein. PLoS ONE, 2017, 12, e0189461.	2.5	8
77	Structural insight into a novel indole prenyltransferase in hapalindole-type alkaloid biosynthesis. Biochemical and Biophysical Research Communications, 2018, 495, 1782-1788.	2.1	8
78	Human DNA Polymerase μ Can Use a Noncanonical Mechanism for Multiple Mn ²⁺ -Mediated Functions. Journal of the American Chemical Society, 2019, 141, 8489-8502.	13.7	8
79	Evidence for an Enzyme-Catalyzed Rauhut–Currier Reaction during the Biosynthesis of Spinosyn A. Journal of the American Chemical Society, 2021, 143, 20291-20295.	13.7	8
80	Integrated omics approach to unveil antifungal bacterial polyynes as acetyl-CoA acetyltransferase inhibitors. Communications Biology, 2022, 5, 454.	4.4	8
81	Structure of undecaprenyl pyrophosphate synthase from <i>Acinetobacter baumannii</i> . Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 765-769.	0.8	7
82	Crystal Structure of PigA: A Prolyl Thioesterâ€Oxidizing Enzyme in Prodigiosin Biosynthesis. ChemBioChem, 2019, 20, 193-202.	2.6	7
83	Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1351-1359.	2.4	7
84	Structural insights into thebaine synthase 2 catalysis. Biochemical and Biophysical Research Communications, 2020, 529, 156-161.	2.1	7
85	Structural Insights of the ssDNA Binding Site in the Multifunctional Endonuclease AtBFN2 from Arabidopsis thaliana. PLoS ONE, 2014, 9, e105821.	2.5	7
86	Headâ€ŧoâ€Head Prenyl Synthases in Pathogenic Bacteria. ChemBioChem, 2017, 18, 985-991.	2.6	6
87	Structure of a gut microbial diltiazem-metabolizing enzyme suggests possible substrate binding mode. Biochemical and Biophysical Research Communications, 2020, 527, 799-804.	2.1	6
88	Structure of fully liganded Hb ζ2β2strapped in a tense conformation. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2061-2071.	2.5	5
89	Minireview: A Comeback of Hgâ€Derivatives in Protein Crystallography with Cysâ€Modification. ChemBioEng Reviews, 2015, 2, 133-140.	4.4	5
90	SH3-like motif-containing C-terminal domain of staphylococcal teichoic acid transporter suggests possible function. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1328-1332.	2.6	5

#	Article	IF	CITATIONS
91	"Headâ€ŧoâ€Middle―and "Headâ€ŧoâ€Tail―cis â€Prenyl Transferases: Structure of Isosesquilavandulyl Diphosphate Synthase. Angewandte Chemie, 2018, 130, 691-695.	2.0	5
92	Crystal structure of the blue fluorescent protein with a Leu-Leu-Gly tri-peptide chromophore derived from the purple chromoprotein of Stichodactyla haddoni. International Journal of Biological Macromolecules, 2019, 130, 675-684.	7.5	5
93	The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. PLoS ONE, 2017, 12, e0169627.	2.5	4
94	Complex structures of MoeN5 with substrate analogues suggest sequential catalytic mechanism. Biochemical and Biophysical Research Communications, 2019, 511, 800-805.	2.1	4
95	Structural characterization of borneol dehydrogenase from <i>Pseudomonas</i> sp. TCU-HL1. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 309-313.	0.8	4
96	Roles of tryptophan residue and disulfide bond in the variable lid region of oxidized polyvinyl alcohol hydrolase. Biochemical and Biophysical Research Communications, 2014, 452, 509-514.	2.1	3
97	Structural basis for the antipolymer activity of Hbζ2βs2trapped in a tense conformation. Journal of Molecular Structure, 2015, 1099, 99-107.	3.6	3
98	Moenomycin Biosynthesis: Structure and Mechanism of Action of the Prenyltransferase MoeN5. Angewandte Chemie, 2016, 128, 4794-4798.	2.0	3
99	Expression, Purification, Crystallization, and X-ray Structural Analysis of CRISPR-Associated Protein Cas6 from Methanocaldococcus jannaschii. Crystals, 2017, 7, 344.	2.2	3
100	Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallographica Section D: Structural Biology, 2022, 78, 633-646.	2.3	3
101	Crystallization and preliminary X-ray diffraction analysis of (R)-carbonyl reductase fromCandida parapsilosis. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 800-802.	0.8	2
102	Titelbild: Structure and Function of a "Headâ€ŧoâ€Middle―Prenyltransferase: Lavandulyl Diphosphate Synthase (Angew. Chem. 15/2016). Angewandte Chemie, 2016, 128, 4689-4689.	2.0	2
103	Crystal structures of Staphylococcal SaeR reveal possible DNA-binding modes. Biochemical and Biophysical Research Communications, 2016, 474, 686-690.	2.1	2
104	The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angewandte Chemie, 2018, 130, 15280-15284.	2.0	2
105	Structural insights into the calcium dependence of Stig cyclases. RSC Advances, 2019, 9, 13182-13185.	3.6	2
106	Structural insights into the substrate selectivity of α-oxoamine synthases from marine Vibrio sp. QWI-06. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112224.	5.0	2
107	Preliminary X-ray diffraction analysis of thermostable β-1,4-xylanase fromStreptomycessp. S9. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 105-107.	0.8	1
108	Preliminary X-ray diffraction analysis of a thermophilic β-1,3–1,4-glucanase fromClostridium thermocellum. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 946-948.	0.8	1

#	Article	IF	CITATIONS
109	Crystallization and preliminary X-ray diffraction analysis of theS-adenosylhomocysteine hydrolase (SAHH) fromThermotoga maritima. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1563-1565.	0.8	1
110	Binding mode of the oxidized α-anomer of NAD+ to RSP, a Rex-family repressor. Biochemical and Biophysical Research Communications, 2015, 456, 733-736.	2.1	1
111	Cloning, expression, identification and characterization of borneol dehydrogenase isozymes in Pseudomonas sp. TCU-HL1. Protein Expression and Purification, 2020, 175, 105715.	1.3	1
112	Structural insight into the differential interactions between the DNA mimic protein SAUGI and two gamma herpesvirus uracil-DNA glycosylases. International Journal of Biological Macromolecules, 2020, 160, 903-914.	7.5	1
113	Crystal structure of the N-terminal domain of TagH reveals a potential drug targeting site. Biochemical and Biophysical Research Communications, 2021, 536, 1-6.	2.1	1
114	A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes. Journal of Molecular Biology, 2021, 433, 166960.	4.2	1
115	2P592 Maturation and Mechanism Based Inhibitor Design of SARS-CoV 3CL Protease : Implication in Antiviral 3C(L) Protease Drug Design(55. Drug design and delivery,Poster Session,Abstract,Meeting) Tj ETQq1 1 0). 7&4 314 ı	ˈɡðT /Overlo
116	1P195 Crystal structure of infectious bursal disease virus VP2 subviral particle : Implications in virion assembly and immunogenicity(6. Macromolecular assembly,Poster Session,Abstract,Meeting Program) Tj ETQq0 (0 0.1 gBT /(Dværlock 10
117	1P219 Structure of the left-handed archaeal RadA filament : a subunit rotation motif controls homologous DNA strand exchange reaction(7. Nucleic acid binding protein,Poster) Tj ETQq1 1 0.784314 rgBT /Ov	veolack 10	0 T6 50 417 T
118	2P058 Dual Binding Sites for Translocation Catalysis by E. coli Glutathionylspermidine Synthetase(29.) Tj ETQq0 Seibutsu Butsuri, 2006, 46, S310.	0 rgBT /0 0.1	Overlock 10 ⁻ 0
119	Crystal Structures and Computer Screened Inhibitors of Helicobacter pylori Undecaprenyl Pyrophosphate Synthase. , 2007, , .		0
120	Back Cover: Insights into the Mechanism of the Antibiotic-Synthesizing Enzyme MoeO5 from Crystal Structures of Different Complexes (Angew. Chem. Int. Ed. 17/2012). Angewandte Chemie - International Edition, 2012, 51, 4240-4240.	13.8	0
121	Titelbild: Structures of Iridoid Synthase fromCantharanthus roseuswith Bound NAD+, NADPH, or NAD+/10-Oxogeranial: Reaction Mechanisms (Angew. Chem. 51/2015). Angewandte Chemie, 2015, 127, 15517-15517.	2.0	0
122	Innenrücktitelbild: "Headâ€ŧoâ€Middle―and "Headâ€ŧoâ€Tail― <i>cis</i> â€Prenyl Transferases: Struc Isosesquilavandulyl Diphosphate Synthase (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 861-861.	ture of	0
123	Rücktitelbild: The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement (Angew. Chem. 46/2018). Angewandte Chemie, 2018, 130, 15506-15506.	2.0	0