Ignacio Martin-Gullon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8039908/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the effect of humidity on thermoplastic starch films using the quartz crystal microbalance. Carbohydrate Polymers, 2021, 261, 117727.	5.1	17
2	New insights into oxygen surface coverage and the resulting two-component structure of graphene oxide. Carbon, 2020, 158, 406-417.	5.4	10
3	Electroconductive starch/multi-walled carbon nanotube films plasticized by 1-ethyl-3-methylimidazolium acetate. Carbohydrate Polymers, 2020, 229, 115545.	5.1	22
4	Custom-Made Chemically Modified Graphene Oxide to Improve the Anti-Scratch Resistance of Urethane-Acrylate Transparent Coatings. Coatings, 2019, 9, 408.	1.2	7
5	Influence of Starch Composition and Molecular Weight on Physicochemical Properties of Biodegradable Films. Polymers, 2019, 11, 1084.	2.0	138
6	Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer. International Journal of Biological Macromolecules, 2019, 135, 845-854.	3.6	54
7	The role of conductive additives on the performance of hybrid carbon xerogels as electrodes in aqueous supercapacitors. Electrochimica Acta, 2019, 295, 693-702.	2.6	18
8	Production of bamboo-type carbon nanotubes doped with nitrogen from polyamide pyrolysis gas. Journal of Analytical and Applied Pyrolysis, 2018, 130, 52-61.	2.6	17
9	Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxyâ€carbon fiber composites. Polymer Composites, 2018, 39, E2116.	2.3	17
10	Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors. Carbon, 2018, 126, 456-463.	5.4	30
11	Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate Polymers, 2018, 202, 299-305.	5.1	60
12	A correlation between the Wolf-Wilburn scale and atomic force microscopy for anti-scratch resistance determination. Progress in Organic Coatings, 2018, 125, 325-330.	1.9	3
13	Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon, 2017, 118, 291-298.	5.4	58
14	Synergistic effect of graphene oxide and wet-chemical hydrazine/deionized water solution treatment on the thermoelectric properties of PEDOT:PSS sprayed films. Synthetic Metals, 2016, 222, 330-337.	2.1	21
15	The effect of carbon nanofillers on the performance of electromechanical polyaniline-based composite actuators. Nanotechnology, 2016, 27, 015501.	1.3	17
16	Towards the understanding of the graphene oxide structure: How to control the formation of humic- and fulvic-like oxidized debris. Carbon, 2015, 84, 299-309.	5.4	59
17	Production of Carbon Nanotubes from Polyethylene Pyrolysis Gas and Effect of Temperature. Industrial & Engineering Chemistry Research, 2013, 52, 14847-14854.	1.8	26
18	Processing and functionalization effect in CNF/PMMA nanocomposites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 711-721.	3.8	15

#	Article	IF	CITATIONS
19	Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules, 2012, 45, 238-245.	2.2	434
20	Effect of solvent nature in castingâ€based carbon nanofiber/poly(methylâ€methacrylate) nanocomposites. Journal of Applied Polymer Science, 2012, 125, 3228-3238.	1.3	3
21	Effects of processing and functionalization methods on nylonâ€6,6 nanocomposites with Helicalâ€ribbon carbon nanofibers. Journal of Applied Polymer Science, 2012, 126, 1437-1448.	1.3	5
22	Hybrid Films with Graphene Oxide and Metal Nanoparticles Could Now Replace Indium Tin Oxide. ACS Nano, 2012, 6, 4565-4572.	7.3	49
23	Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites. Composites Science and Technology, 2012, 72, 218-224.	3.8	25
24	Augmented fatigue performance and constant life diagrams of hierarchical carbon fiber/nanofiber epoxy composites. Composites Science and Technology, 2012, 72, 446-452.	3.8	17
25	Formation and Elimination of Pollutant during Sludge Decomposition in the Presence of Cement Raw Material and Other Catalysts. Advances in Chemical Engineering and Science, 2011, 01, 183-190.	0.2	7
26	Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1584-1591.	3.8	38
27	Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Composites Science and Technology, 2011, 71, 31-38.	3.8	126
28	Graphene oxide nanoplatelets of different crystallinity synthesized from helical-ribbon carbon nanofibers and multiwall carbon nanotubes. Journal of Materials Research, 2011, 26, 2632-2641.	1.2	13
29	Fracture toughness and creep performance of PMMA composites containing micro and nanosized carbon filaments. Composites Science and Technology, 2010, 70, 1189-1195.	3.8	58
30	Highly crystalline graphene oxide nano-platelets produced from helical-ribbon carbon nanofibers. Carbon, 2010, 48, 3640-3643.	5.4	41
31	Comparison between emissions from the pyrolysis and combustion of different wastes. Journal of Analytical and Applied Pyrolysis, 2009, 84, 95-102.	2.6	120
32	Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Composites Science and Technology, 2009, 69, 1521-1532.	3.8	52
33	The effect of graphitization temperature on the structure of helical-ribbon carbon nanofibers. Carbon, 2009, 47, 2211-2218.	5.4	64
34	Organic and inorganic pollutants from cement kiln stack feeding alternative fuels. Journal of Hazardous Materials, 2008, 158, 585-592.	6.5	123
35	Broad-Band Electrical Conductivity of High Density Polyethylene Nanocomposites with Carbon Nanoadditives: Multiwall Carbon Nanotubes and Carbon Nanofibers. Macromolecules, 2008, 41, 7090-7097.	2.2	100
36	Interaction between pollutants produced in sewage sludge combustion and cement raw material. Chemosphere, 2007, 69, 387-394.	4.2	27

Ignacio Martin-Gullon

#	Article	IF	CITATIONS
37	Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers. Carbon, 2007, 45, 2751-2758.	5.4	87
38	Analytical pyrolysis as a characterization technique for monitoring the production of carbon nanofilaments. Journal of Analytical and Applied Pyrolysis, 2007, 79, 484-489.	2.6	8
39	Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants. Journal of Analytical and Applied Pyrolysis, 2007, 79, 215-226.	2.6	109
40	Chapter 1 Types of carbon adsorbents and their production. Interface Science and Technology, 2006, 7, 1-47.	1.6	74
41	Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 2006, 44, 1572-1580.	5.4	200
42	Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. Journal of Analytical and Applied Pyrolysis, 2006, 76, 124-131.	2.6	46
43	Emissions from pyrolysis and combustion of olive oil solid waste. Journal of Analytical and Applied Pyrolysis, 2005, 74, 512-517.	2.6	29
44	Kinetic study of the pyrolysis of neoprene. Journal of Analytical and Applied Pyrolysis, 2005, 74, 231-237.	2.6	11
45	Thermogravimetric study of different sewage sludges and their relationship with the nitrogen content. Journal of Analytical and Applied Pyrolysis, 2005, 74, 421-428.	2.6	61
46	Rubber tire thermal decomposition in a used oil environment. Journal of Analytical and Applied Pyrolysis, 2005, 74, 265-269.	2.6	11
47	Organic Compounds Produced during the Thermal Decomposition of Cotton Fabrics. Environmental Science & Technology, 2005, 39, 5141-5147.	4.6	18
48	Kinetics of the pyrolysis and combustion of olive oil solid waste. Journal of Analytical and Applied Pyrolysis, 2004, 72, 9-15.	2.6	88
49	Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons. Carbon, 2004, 42, 1339-1343.	5.4	35
50	Complete Study of the Pyrolysis and Gasification of Scrap Tires in a Pilot Plant Reactor. Environmental Science & Technology, 2004, 38, 3189-3194.	4.6	120
51	Pyrolysis and combustion kinetics and emissions of waste lube oils. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 527-546.	2.6	66
52	Interrelation between the kinetic constant and the reaction order in pyrolysis. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 645-655.	2.6	26
53	Semivolatile compounds in pyrolysis of polyethylene. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 599-611.	2.6	39
54	Pyrolysis of sewage sludge: nitrogenated compounds and pretreatment effects. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 561-575.	2.6	77

#	Article	IF	CITATIONS
55	Dynamic pesticide removal with activated carbon fibers. Water Research, 2001, 35, 516-520.	5.3	96
56	Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET). Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 635-650.	2.6	115
57	Kinetic law for solids decomposition. Application to thermal degradation of heterogeneous materials. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 703-731.	2.6	32
58	PAN-based activated carbon fiber composites for sulfur dioxide conversion: influence of fiber activation method. Fuel, 2001, 80, 969-977.	3.4	48
59	Activated carbons from bituminous coal: effect of mineral matter content. Fuel, 2000, 79, 635-643.	3.4	82
60	Porosity Development during CO2and Steam Activation in a Fluidized Bed Reactor. Energy & Fuels, 2000, 14, 142-149.	2.5	39
61	Comments on "Production of Activated Carbon from Coconut Shell Char in a Fluidized Bed Reactorâ€. Industrial & Engineering Chemistry Research, 1999, 38, 1166-1168.	1.8	1
62	Steam Activation of a Bituminous Coal in a Multistage Fluidized Bed Pilot Plant:Â Operation and Simulation Model. Industrial & Engineering Chemistry Research, 1996, 35, 4139-4146.	1.8	10
63	Influence of the carbonization heating rate on the physical properties of activated carbons from a sub-bituminous coal. Carbon, 1996, 34, 449-456.	5.4	20
64	Steam-activated carbons from a bituminous coal in a continuous multistage fluidized bed pilot plant. Carbon, 1996, 34, 1515-1520.	5.4	11
65	Stable operating velocity range for multistage fluidized bed reactors with downcomers. Powder Technology, 1995, 85, 193-201.	2.1	13