Eric Bartee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8039694/publications.pdf

Version: 2024-02-01

304602 434063 1,960 49 22 citations h-index papers

g-index 50 50 50 2577 citing authors docs citations times ranked all docs

31

#	Article	IF	CITATIONS
1	B cells imprint adoptively transferred CD8 ⁺ T cells with enhanced tumor immunity., 2022, 10, e003078.		7
2	The use of oncolytic virotherapy in the neoadjuvant setting. , 2022, 10, e004462.		11
3	TNF blockade enhances the efficacy of myxoma virus-based oncolytic virotherapy., 2022, 10, e004770.		2
4	Interleukin-23 receptor signaling by interleukin-39 potentiates T cell pathogenicity in acute graft-versus-host disease. American Journal of Transplantation, 2021, 21, 3538-3549.	2.6	9
5	Decreasing the Susceptibility of Malignant Cells to Infection Does Not Impact the Overall Efficacy of Myxoma Virus-Based Oncolytic Virotherapy. Molecular Therapy - Oncolytics, 2020, 19, 323-331.	2.0	0
6	Initial dose of oncolytic myxoma virus programs durable antitumor immunity independent of in vivo viral replication., 2020, 8, e000804.		5
7	Reduced cellular binding affinity has profoundly different impacts on the spread of distinct poxviruses. PLoS ONE, 2020, 15, e0231977.	1.1	5
8	Title is missing!. , 2020, 15, e0231977.		0
9	Title is missing!. , 2020, 15, e0231977.		0
10	Title is missing!. , 2020, 15, e0231977.		0
11	Title is missing!. , 2020, 15, e0231977.		0
12	Title is missing!. , 2020, 15, e0231977.		0
13	Title is missing!. , 2020, 15, e0231977.		O
14	Title is missing!. , 2020, 15, e0231977.		0
15	Title is missing!. , 2020, 15, e0231977.		O
16	Title is missing!. , 2020, 15, e0231977.		0
17	Title is missing!. , 2020, 15, e0231977.		0
18	Syncytia Formation in Oncolytic Virotherapy. Molecular Therapy - Oncolytics, 2019, 15, 131-139.	2.0	25

#	Article	IF	CITATIONS
19	Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Frontiers in Immunology, 2019, 10, 263.	2.2	69
20	Impact of Induced Syncytia Formation on the Oncolytic Potential of Myxoma Virus. Oncolytic Virotherapy, 2019, Volume 8, 57-69.	6.0	0
21	Chimeric tumor modeling reveals role of partial PDL1 expression in resistance to virally induced immunotherapy. , 2019, 7, 11.		4
22	Potential Role of IL-39 in the Development of Gvhd. Blood, 2019, 134, 3206-3206.	0.6	0
23	Refinement and Successful Implementation of a Scoring System for Myxomatosis in a Susceptible Rabbit (<i>Oryctolagus cuniculus</i>) Model. Comparative Medicine, 2018, 68, 280-285.	0.4	2
24	Oncolytic myxoma virus synergizes with standard of care for treatment of glioblastoma multiforme. Oncolytic Virotherapy, 2018, Volume 7, 107-116.	6.0	15
25	Potential of oncolytic viruses in the treatment of multiple myeloma. Oncolytic Virotherapy, 2018, Volume 7, 1-12.	6.0	9
26	Tumor-Localized Secretion of Soluble PD1 Enhances Oncolytic Virotherapy. Cancer Research, 2017, 77, 2952-2963.	0.4	86
27	In vivo and in situ programming of tumor immunity by combining oncolytics and PD-1 immune checkpoint blockade. Experimental Hematology and Oncology, 2017, 6, 15.	2.0	7
28	Systemic therapy with oncolytic myxoma virus cures established residual multiple myeloma in mice. Molecular Therapy - Oncolytics, 2016, 3, 16032.	2.0	25
29	Myxoma Virus Induces Ligand Independent Extrinsic Apoptosis in Human Myeloma Cells. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 203-212.	0.2	23
30	Myxoma virus attenuates expression of activating transcription factor 4 (ATF4) which has implications for the treatment of proteasome inhibitor α 0 virotherapy, 2015, 4, 1.	6.0	10
31	Cytokine synergy: An underappreciated contributor to innate anti-viral immunity. Cytokine, 2013, 63, 237-240.	1.4	47
32	Selective Purging of Human Multiple Myeloma Cells from Autologous Stem Cell Transplantation Grafts using Oncolytic Myxoma Virus. Biology of Blood and Marrow Transplantation, 2012, 18, 1540-1551.	2.0	56
33	Virotherapy Using Myxoma Virus Prevents Lethal Graft-versus-Host Disease following Xeno-Transplantation with Primary Human Hematopoietic Stem Cells. PLoS ONE, 2012, 7, e43298.	1.1	14
34	Oncolytic Virotherapy for Hematological Malignancies. Advances in Virology, 2012, 2012, 1-8.	0.5	31
35	Acute myeloid leukemia targeting by myxoma virus in vivo depends on cell binding but not permissiveness to infection in vitro. Leukemia Research, 2012, 36, 619-624.	0.4	20
36	Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells. Virology, 2010, 401, 266-279.	1.1	26

#	Article	IF	Citations
37	Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes. PLoS ONE, 2010, 5, e15132.	1.1	74
38	The Addition of Tumor Necrosis Factor plus Beta Interferon Induces a Novel Synergistic Antiviral State against Poxviruses in Primary Human Fibroblasts. Journal of Virology, 2009, 83, 498-511.	1.5	77
39	Cytokine determinants of viral tropism. Nature Reviews Immunology, 2009, 9, 645-655.	10.6	121
40	Human cancer cells have specifically lost the ability to induce the synergistic state caused by tumor necrosis factor plus interferon- \hat{l}^2 . Cytokine, 2009, 47, 199-205.	1.4	46
41	Interleukinâ€10â€induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. European Journal of Immunology, 2008, 38, 1225-1230.	1.6	135
42	Tumor necrosis factor and interferon: cytokines in harmony. Current Opinion in Microbiology, 2008, 11, 378-383.	2.3	52
43	RIG-I Mediates the Co-Induction of Tumor Necrosis Factor and Type I Interferon Elicited by Myxoma Virus in Primary Human Macrophages. PLoS Pathogens, 2008, 4, e1000099.	2.1	81
44	Quantitative Membrane Proteomics Reveals New Cellular Targets of Viral Immune Modulators. PLoS Pathogens, 2006, 2, e107.	2.1	194
45	The Poxviral RING Protein p28 Is a Ubiquitin Ligase That Targets Ubiquitin to Viral Replication Factories. Journal of Virology, 2005, 79, 597-601.	1.5	54
46	TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochemical Journal, 2005, 388, 647-655.	1.7	147
47	Downregulation of Major Histocompatibility Complex Class I by Human Ubiquitin Ligases Related to Viral Immune Evasion Proteins. Journal of Virology, 2004, 78, 1109-1120.	1.5	275
48	The PHD/LAP-Domain Protein M153R of Myxomavirus Is a Ubiquitin Ligase That Induces the Rapid Internalization and Lysosomal Destruction of CD4. Journal of Virology, 2003, 77, 1427-1440.	1.5	120
49	Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Research, 2002, 88, 55-69.	1.1	76