Stephen Pye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8039608/publications.pdf

Version: 2024-02-01

218381 197535 5,850 47 26 49 h-index citations g-index papers 155 155 155 6689 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.	6.3	1,311
2	The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, The, 2019, 394, 1836-1878.	6.3	905
3	The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet, The, 2018, 391, 581-630.	6.3	802
4	The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet, The, 2018, 392, 2479-2514.	6.3	595
5	Unextractable fossil fuels in a 1.5 °C world. Nature, 2021, 597, 230-234.	13.7	407
6	Formalizing best practice for energy system optimization modelling. Applied Energy, 2017, 194, 184-198.	5.1	235
7	A review of approaches to uncertainty assessment in energy system optimization models. Energy Strategy Reviews, 2018, 21, 204-217.	3.3	121
8	Achieving net-zero emissions through the reframing of UK national targets in the post-ParisÂAgreementÂera. Nature Energy, 2017, 2, .	19.8	94
9	An integrated systematic analysis of uncertainties in UK energy transition pathways. Energy Policy, 2015, 87, 673-684.	4.2	93
10	A pathway design framework for national low greenhouse gas emission development strategies. Nature Climate Change, 2019, 9, 261-268.	8.1	93
11	The iterative contribution and relevance of modelling to UK energy policy. Energy Policy, 2009, 37, 850-860.	4.2	88
12	Modelling net-zero emissions energy systems requires a change in approach. Climate Policy, 2021, 21, 222-231.	2.6	85
13	Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective. Applied Energy, 2018, 228, 965-979.	5.1	72
14	Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom. Energy Policy, 2017, 101, 42-51.	4.2	61
15	Strengthening the EU response to energy poverty. Nature Energy, 2019, 4, 2-5.	19.8	61
16	The future role of natural gas in the UK: A bridge to nowhere?. Energy Policy, 2018, 113, 454-465.	4.2	57
17	The uncertain but critical role of demand reduction in meeting long-term energy decarbonisation targets. Energy Policy, 2014, 73, 575-586.	4.2	56
18	Uncertainty, politics, and technology: Expert perceptions on energy transitions in the United Kingdom. Energy Research and Social Science, 2018, 37, 122-132.	3.0	49

#	Article	IF	CITATIONS
19	Europe's ambition for biofuels in aviation - A strategic review of challenges and opportunities. Energy Strategy Reviews, 2018, 20, 1-5.	3.3	47
20	Energy demand reduction options for meeting national zero-emission targets in the United Kingdom. Nature Energy, 2022, 7, 726-735.	19.8	47
21	Modelling sustainable urban travel in a whole systems energy model. Applied Energy, 2015, 159, 97-107.	5.1	44
22	An equitable redistribution of unburnable carbon. Nature Communications, 2020, 11, 3968.	5.8	44
23	The Lancet Countdown on health benefits from the UK Climate Change Act: a modelling study for Great Britain. Lancet Planetary Health, The, 2018, 2, e202-e213.	5.1	38
24	Improving deep decarbonization modelling capacity for developed and developing country contexts. Climate Policy, 2016, 16, S27-S46.	2.6	36
25	Assessing qualitative and quantitative dimensions of uncertainty in energy modelling for policy support in the United Kingdom. Energy Research and Social Science, 2018, 46, 332-344.	3.0	36
26	Regional winners and losers in future UK energy system transitions. Energy Strategy Reviews, 2016, 13-14, 11-31.	3.3	34
27	Using large ensembles of climate change mitigation scenarios for robust insights. Nature Climate Change, 2022, 12, 428-435.	8.1	28
28	Tracking sectoral progress in the deep decarbonisation of energy systems in Europe. Energy Policy, 2017, 110, 509-517.	4.2	25
29	The role of international drivers on UK scenarios of a low-carbon society. Climate Policy, 2008, 8, S125-S139.	2.6	22
30	Technology interdependency in the United Kingdom's low carbon energy transition. Energy Strategy Reviews, 2019, 24, 314-330.	3.3	22
31	Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?. Applied Energy, 2019, 239, 991-1002.	5.1	20
32	Capturing the distributional impacts of long-term low-carbon transitions. Environmental Innovation and Societal Transitions, 2020, 35, 346-356.	2.5	19
33	Low emissions development pathways of the Macedonian energy sector. Renewable and Sustainable Energy Reviews, 2016, 53, 1202-1211.	8.2	18
34	Nationally Determined Contributions under the Paris Agreement and the costs of delayed action. Climate Policy, 2019, 19, 947-958.	2.6	17
35	Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective. Energies, 2020, 13, 1869.	1.6	17
36	Smart energy solutions in the EU: State of play and measuring progress. Energy Strategy Reviews, 2018, 20, 133-149.	3.3	16

STEPHEN PYE

#	Article	IF	CITATION
37	Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis. Climate Policy, 2016, 16, S92-S109.	2.6	15
38	Using clustering algorithms to characterise uncertain long-term decarbonisation pathways. Applied Energy, 2020, 268, 114947.	5.1	14
39	A pathway design framework for sectoral deep decarbonization: the case of passenger transportation. Climate Policy, 2021, 21, 93-106.	2.6	14
40	Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions. Renewable and Sustainable Energy Reviews, 2022, 161, 112330.	8.2	13
41	Assessment of the impact of renewable energy and energy efficiency policies on the Macedonian energy sector development. Journal of Renewable and Sustainable Energy, 2013, 5, 041814.	0.8	9
42	Inequality in energy and climate policies: Assessing distributional impact consideration in UK policy appraisal. Energy Policy, 2018, 123, 594-601.	4.2	9
43	Exploring the impact of reduced hydro capacity and lignite resources on the Macedonian power sector development. Thermal Science, 2014, 18, 721-730.	0.5	9
44	Beyond the Energy System: Modeling Frameworks Depicting Distributional Impacts for Interdisciplinary Policy Analysis. Energy Technology, 2021, 9, 2000668.	1.8	7
45	Implications of climate targets on oil production and fiscal revenues in Latin America and the Caribbean. Energy and Climate Change, 2021, 2, 100037.	2.2	5
46	Lost generation: Reflections on resilience and flexibility from an energy system architecture perspective. Applied Energy, 2021, 298, 117179.	5.1	4
47	Public health air pollution impacts of pathway options to meet the 2050 UK Climate Change Act target: a modelling study. Public Health Research, 2018, 6, 1-124.	0.5	2