Steven M Greenberg

List of Publications by Citations

Source: https://exaly.com/author-pdf/8039440/steven-m-greenberg-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

330 papers

29,118 citations

82 h-index 166 g-index

354 ext. papers

34,540 ext. citations

7.6 avg, IF

/ L-index

#	Paper	IF	Citations
330	Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. <i>Lancet Neurology, The</i> , 2013 , 12, 822-38	24.1	2662
329	Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. <i>Stroke</i> , 2011 , 42, 2672-	793	2301
328	Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. <i>Stroke</i> , 2015 , 46, 2032-60	6.7	1827
327	Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurology, The, 2009, 8, 165-74	24.1	1206
326	Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. <i>Stroke</i> , 2010 , 41, 2108-29	6.7	1187
325	Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. <i>Neurobiology of Disease</i> , 2006 , 24, 516-24	7.5	525
324	The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage. <i>Archives of Internal Medicine</i> , 2004 , 164, 880-4		461
323	Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. <i>Stroke</i> , 2004 , 35, 1415-20	6.7	446
322	Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. <i>Annals of Neurology</i> , 2001 , 49, 697-705	9.4	430
321	Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. <i>New England Journal of Medicine</i> , 2000 , 342, 240-5	59.2	421
320	Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. <i>Annals of Neurology</i> , 2007 , 62, 229-34	9.4	420
319	Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. <i>Annals of Neurology</i> , 1995 , 38, 254-9	9.4	378
318	Cerebral amyloid angiopathy in the elderly. <i>Annals of Neurology</i> , 2011 , 70, 871-80	9.4	367
317	Vascular contributions to cognitive impairment and dementia including Alzheimers disease. <i>Alzheimerl</i> and Dementia, 2015 , 11, 710-7	1.2	364
316	Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup. <i>Alzheimerl</i> s and Dementia, 2011 , 7, 367-85	1.2	364
315	Prediction of functional outcome in patients with primary intracerebral hemorrhage: the FUNC score. <i>Stroke</i> , 2008 , 39, 2304-9	6.7	333
314	Cerebral microinfarcts: the invisible lesions. <i>Lancet Neurology, The</i> , 2012 , 11, 272-82	24.1	325

3	13	Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. <i>Archives of Neurology</i> , 2007 , 64, 431-4		297	
3:	12	Clinical manifestations of cerebral amyloid angiopathy-related inflammation. <i>Annals of Neurology</i> , 2004 , 55, 250-6	9.4	290	
3	11	Can patients be anticoagulated after intracerebral hemorrhage? A decision analysis. <i>Stroke</i> , 2003 , 34, 1710-6	6.7	265	
3:	10	Amyloid angiopathy-related vascular cognitive impairment. <i>Stroke</i> , 2004 , 35, 2616-9	6.7	243	
30	09	Cerebral amyloid angiopathy: a systematic review. Journal of Clinical Neurology (Korea, 2011 , 7, 1-9	1.7	237	
30	08	Emerging concepts in sporadic cerebral amyloid angiopathy. <i>Brain</i> , 2017 , 140, 1829-1850	11.2	213	
30	07	Petechial hemorrhages accompanying lobar hemorrhage: detection by gradient-echo MRI. <i>Neurology</i> , 1996 , 46, 1751-4	6.5	213	
30	06	Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. <i>Brain</i> , 2015 , 138, 2126-39	11.2	208	
30	05	Beta-amyloid, blood vessels, and brain function. <i>Stroke</i> , 2009 , 40, 2601-6	6.7	205	
30	04	Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. <i>Neurology</i> , 1998 , 51, 690-4	4 6.5	198	
30	03	Predicting hematoma expansion after primary intracerebral hemorrhage. <i>JAMA Neurology</i> , 2014 , 71, 158-64	17.2	196	
30	02	Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. <i>Annals of Neurology</i> , 2005 , 58, 459-62	9.4	193	
30	01	Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. <i>Annals of Neurology</i> , 2010 , 68, 934-43	9.4	191	
30	00	Pathogenic effects of D23N Iowa mutant amyloid beta -protein. <i>Journal of Biological Chemistry</i> , 2001 , 276, 32860-6	5.4	188	
2	99	Diagnosis of Cerebral Amyloid Angiopathy: Evolution of the Boston Criteria. <i>Stroke</i> , 2018 , 49, 491-497	6.7	185	
2	98	Moving the tipping point: the decision to anticoagulate patients with atrial fibrillation. <i>Circulation:</i> Cardiovascular Quality and Outcomes, 2011 , 4, 14-21	5.8	179	
2	97	Prevention of Stroke in Patients With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. <i>Stroke</i> , 2017 , 48, e44-e71	6.7	178	
2	96	Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. <i>Stroke</i> , 1997 , 28, 1418-22	6.7	175	

295	Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. <i>Nature Reviews Neurology</i> , 2020 , 16, 30-42	15	171
294	Hematoma expansion following acute intracerebral hemorrhage. <i>Cerebrovascular Diseases</i> , 2013 , 35, 195-201	3.2	167
293	Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. <i>American Journal of Human Genetics</i> , 2014 , 94, 511-21	11	166
292	Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer's disease mouse models. <i>Acta Neuropathologica</i> , 2013 , 126, 353-64	14.3	165
291	Apolipoprotein E epsilon 4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. <i>Stroke</i> , 1996 , 27, 1333-7	6.7	163
290	Spatial distribution of white-matter hyperintensities in Alzheimer disease, cerebral amyloid angiopathy, and healthy aging. <i>Stroke</i> , 2008 , 39, 1127-33	6.7	157
289	The cerebral beta-amyloid angiopathies: hereditary and sporadic. <i>Brain Pathology</i> , 2006 , 16, 30-9	6	153
288	Detection, risk factors, and functional consequences of cerebral microinfarcts. <i>Lancet Neurology, The</i> , 2017 , 16, 730-740	24.1	152
287	Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. <i>Annals of Neurology</i> , 2010 , 68, 545-8	9.4	147
286	Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. <i>Brain</i> , 2007 , 130, 2310-9	11.2	146
285	Association Between Blood Pressure Control and Risk of Recurrent Intracerebral Hemorrhage. JAMA - Journal of the American Medical Association, 2015 , 314, 904-12	27.4	142
284	APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. <i>Lancet Neurology, The</i> , 2011 , 10, 702-9	24.1	141
283	Association Between Hypodensities Detected by Computed Tomography and Hematoma Expansion in Patients With Intracerebral Hemorrhage. <i>JAMA Neurology</i> , 2016 , 73, 961-8	17.2	135
282	Progression of cerebral amyloid angiopathy: accumulation of amyloid-beta40 in affected vessels. Journal of Neuropathology and Experimental Neurology, 1998, 57, 353-9	3.1	135
281	Cerebrovascular lesions induce transient Eamyloid deposition. <i>Brain</i> , 2011 , 134, 3697-707	11.2	134
280	Microbleeds versus macrobleeds: evidence for distinct entities. <i>Stroke</i> , 2009 , 40, 2382-6	6.7	134
279	Cerebrospinal fluid amyloid beta(40) is decreased in cerebral amyloid angiopathy. <i>Annals of Neurology</i> , 2009 , 66, 245-9	9.4	134
278	Small vessels, big problems. <i>New England Journal of Medicine</i> , 2006 , 354, 1451-3	59.2	125

(2017-2016)

277	Validation of Clinicoradiological Criteria for the Diagnosis of Cerebral Amyloid Angiopathy-Related Inflammation. <i>JAMA Neurology</i> , 2016 , 73, 197-202	17.2	124
276	Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. <i>Annals of Neurology</i> , 2012 , 72, 76-81	9.4	124
275	MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. <i>Neurology</i> , 2017 , 88, 1157-1164	6.5	120
274	Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. <i>Brain</i> , 2015 , 138, 179-88	11.2	120
273	Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: A meta-analysis. <i>Neurology</i> , 2017 , 89, 820-829	6.5	115
272	Preventing dementia by preventing stroke: The Berlin Manifesto. <i>Alzheimerl</i> s and Dementia, 2019 , 15, 961-984	1.2	113
271	Topography of dilated perivascular spaces in subjects from a memory clinic cohort. <i>Neurology</i> , 2013 , 80, 1551-6	6.5	113
270	Anti-amyloid lautoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies. <i>Annals of Neurology</i> , 2013 , 73, 449-58	9.4	111
269	The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 982-994	5.5	109
268	Vasomotion as a Driving Force for Paravascular Clearance in the Awake Mouse Brain. <i>Neuron</i> , 2020 , 105, 549-561.e5	13.9	107
267	Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study. <i>Annals of Neurology</i> , 2013 , 73, 529-36	9.4	106
266	Cerebral amyloid angiopathy and vessel dysfunction. <i>Cerebrovascular Diseases</i> , 2002 , 13 Suppl 2, 42-7	3.2	106
265	The Pathophysiology of Intracerebral Hemorrhage Formation and Expansion. <i>Translational Stroke Research</i> , 2015 , 6, 257-63	7.8	104
264	Cerebral microbleeds: overview and implications in cognitive impairment. <i>Alzheimerh Research and Therapy</i> , 2014 , 6, 33	9	103
263	Outcome markers for clinical trials in cerebral amyloid angiopathy. Lancet Neurology, The, 2014, 13, 419	9-28 .1	102
262	White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. <i>Neurology</i> , 2016 , 86, 505-11	6.5	100
261	Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. <i>Lancet Neurology, The</i> , 2019 , 18, 428-438	24.1	99
260	Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion. <i>Neurology</i> , 2017 , 89, 548-554	6.5	97

259	Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. <i>Neurology</i> , 2012 , 79, 320-6	6.5	97
258	Incidence of symptomatic hemorrhage in patients with lobar microbleeds. <i>Stroke</i> , 2014 , 45, 2280-5	6.7	96
257	Descriptive analysis of the Boston criteria applied to a Dutch-type cerebral amyloid angiopathy population. <i>Stroke</i> , 2009 , 40, 3022-7	6.7	95
256	Blood pressure from mid- to late life and risk of incident dementia. <i>Neurology</i> , 2017 , 89, 2447-2454	6.5	91
255	Diagnostic value of lobar microbleeds in individuals without intracerebral hemorrhage. <i>Alzheimerh</i> s and Dementia, 2015 , 11, 1480-1488	1.2	89
254	Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post-mortem brain tissue. <i>American Journal of Neurodegenerative Disease</i> , 2014 , 3, 19-32	2.5	89
253	Mixed-location cerebral hemorrhage/microbleeds: Underlying microangiopathy and recurrence risk. <i>Neurology</i> , 2018 , 90, e119-e126	6.5	88
252	Estimating cerebral microinfarct burden from autopsy samples. <i>Neurology</i> , 2013 , 80, 1365-9	6.5	86
251	Quantitation of apoE domains in Alzheimer disease brain suggests a role for apoE in Abeta aggregation. <i>Journal of Neuropathology and Experimental Neurology</i> , 2001 , 60, 342-9	3.1	85
250	Total Magnetic Resonance Imaging Burden of Small Vessel Disease in Cerebral Amyloid Angiopathy: An Imaging-Pathologic Study of Concept Validation. <i>JAMA Neurology</i> , 2016 , 73, 994-1001	17.2	85
249	Disconnection of the ascending arousal system in traumatic coma. <i>Journal of Neuropathology and Experimental Neurology</i> , 2013 , 72, 505-23	3.1	83
248	Statin use following intracerebral hemorrhage: a decision analysis. <i>Archives of Neurology</i> , 2011 , 68, 573-	-9	82
247	Cerebral amyloid angiopathy with and without hemorrhage: evidence for different disease phenotypes. <i>Neurology</i> , 2015 , 84, 1206-12	6.5	81
246	Recommendations of the Alzheimer's disease-related dementias conference. <i>Neurology</i> , 2014 , 83, 851-	60 .5	80
245	Ischemic brain injury in cerebral amyloid angiopathy. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2016 , 36, 40-54	7.3	79
244	Testing for CYP2C9 Before Anticoagulant Therapy. <i>Journal of General Internal Medicine</i> , 2009 , 24, 993-9	·9β	78
243	Oral Anticoagulation and Functional Outcome after Intracerebral Hemorrhage. <i>Annals of Neurology</i> , 2017 , 82, 755-765	9.4	77
242	Detection of isolated cerebrovascular beta-amyloid with Pittsburgh compound B. <i>Annals of Neurology</i> , 2008 , 64, 587-91	9.4	77

(2003-2016)

241	Predicting Intracerebral Hemorrhage Growth With the Spot Sign: The Effect of Onset-to-Scan Time. <i>Stroke</i> , 2016 , 47, 695-700	6.7	75	
240	MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage. <i>Stroke</i> , 2010 , 41, 1933-8	6.7	75	
239	Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study. <i>Brain</i> , 2016 , 139, 3151-3162	11.2	74	
238	Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study. <i>Lancet Neurology, The</i> , 2016 , 15, 811-819	24.1	74	
237	The genetic architecture of intracerebral hemorrhage. <i>Stroke</i> , 2008 , 39, 2166-73	6.7	73	
236	Alzheimer\$ Disease-Related Dementias Summit 2016: National research priorities. <i>Neurology</i> , 2017 , 89, 2381-2391	6.5	71	
235	Posterior white matter disease distribution as a predictor of amyloid angiopathy. <i>Neurology</i> , 2014 , 83, 794-800	6.5	70	
234	APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2014 , 85, 300-5	5.5	68	
233	Effect of statins on intracerebral hemorrhage outcome and recurrence. Stroke, 2008, 39, 2151-4	6.7	68	
232	Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. <i>Neurology</i> , 2017 , 88, 2162-2168	6.5	67	
231	Intensive Blood Pressure Reduction and Spot Sign in Intracerebral Hemorrhage: A Secondary Analysis of a Randomized Clinical Trial. <i>JAMA Neurology</i> , 2017 , 74, 950-960	17.2	67	
230	CTA spot sign predicts hematoma expansion in patients with delayed presentation after intracerebral hemorrhage. <i>Neurocritical Care</i> , 2012 , 17, 421-8	3.3	67	
229	Predicting Intracerebral Hemorrhage Expansion With Noncontrast Computed Tomography: The BAT Score. <i>Stroke</i> , 2018 , 49, 1163-1169	6.7	66	
228	Risk Factors Associated With Early vs Delayed Dementia After Intracerebral Hemorrhage. <i>JAMA Neurology</i> , 2016 , 73, 969-76	17.2	63	
227	Apolipoprotein E genotype predicts hematoma expansion in lobar intracerebral hemorrhage. <i>Stroke</i> , 2012 , 43, 1490-5	6.7	63	
226	Characteristic distributions of intracerebral hemorrhage-associated diffusion-weighted lesions. <i>Neurology</i> , 2012 , 79, 2335-41	6.5	62	
225	Tissue microstructural changes are independently associated with cognitive impairment in cerebral amyloid angiopathy. <i>Stroke</i> , 2008 , 39, 1988-92	6.7	62	
224	Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. <i>Current Atherosclerosis Reports</i> , 2003 , 5, 260-6	6	62	

223	Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. <i>Journal of Neuroscience</i> , 2006 , 26, 365-71	6.6	61
222	Cortical superficial siderosis multifocality in cerebral amyloid angiopathy: A prospective study. <i>Neurology</i> , 2017 , 89, 2128-2135	6.5	59
221	Florbetapir-PET to diagnose cerebral amyloid angiopathy: A prospective study. <i>Neurology</i> , 2016 , 87, 20)4 3. 304	1 9 59
220	Standards for Detecting, Interpreting, and Reporting Noncontrast Computed Tomographic Markers of Intracerebral Hemorrhage Expansion. <i>Annals of Neurology</i> , 2019 , 86, 480-492	9.4	57
219	Leukocyte Count and Intracerebral Hemorrhage Expansion. <i>Stroke</i> , 2016 , 47, 1473-8	6.7	57
218	Noncontrast Computed Tomography Hypodensities Predict Poor Outcome in Intracerebral Hemorrhage Patients. <i>Stroke</i> , 2016 , 47, 2511-6	6.7	56
217	Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. <i>Journal of Neurology</i> , 2012 , 259, 530-6	5.5	53
216	Microinfarct disruption of white matter structure: a longitudinal diffusion tensor analysis. <i>Neurology</i> , 2014 , 83, 182-8	6.5	53
215	Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study. <i>Lancet Neurology, The</i> , 2017 , 16, 115-122	24.1	52
214	Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2016 , 36, 576-80	7.3	52
213	White matter alterations in cerebral amyloid angiopathy measured by diffusion tensor imaging. <i>Stroke</i> , 2006 , 37, 1759-64	6.7	52
212	Antibody-mediated clearance of amyloid-beta peptide from cerebral amyloid angiopathy revealed by quantitative in vivo imaging. <i>Journal of Neuroscience</i> , 2007 , 27, 1973-80	6.6	51
211	Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice. <i>Journal of Neurochemistry</i> , 2009 , 109, 1636-47	6	50
210	Association of Key Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease With Hematoma Volume and Expansion in Patients With Lobar and Deep Intracerebral Hemorrhage. JAMA Neurology, 2016 , 73, 1440-1447	17.2	48
209	Delayed seizures after intracerebral haemorrhage. <i>Brain</i> , 2016 , 139, 2694-2705	11.2	48
208	Clinical significance of cerebral microbleeds on MRI: A comprehensive meta-analysis of risk of intracerebral hemorrhage, ischemic stroke, mortality, and dementia in cohort studies (v1). <i>International Journal of Stroke</i> , 2018 , 13, 454-468	6.3	47
207	Diffusion tensor imaging in acute-to-subacute traumatic brain injury: a longitudinal analysis. <i>BMC Neurology</i> , 2016 , 16, 2	3.1	47
206	CT angiography spot sign in intracerebral hemorrhage predicts active bleeding during surgery. Neurology, 2014 , 83, 883-9	6.5	46

205	Interrelationship of superficial siderosis and microbleeds in cerebral amyloid angiopathy. <i>Neurology</i> , 2014 , 83, 1838-43	6.5	46	
204	Cortical superficial siderosis and first-ever cerebral hemorrhage in cerebral amyloid angiopathy. <i>Neurology</i> , 2017 , 88, 1607-1614	6.5	45	
203	Association Between Serum Calcium Level and Extent of Bleeding in Patients With Intracerebral Hemorrhage. <i>JAMA Neurology</i> , 2016 , 73, 1285-1290	17.2	45	
202	Core cerebrospinal fluid biomarker profile in cerebral amyloid angiopathy: A meta-analysis. <i>Neurology</i> , 2018 , 90, e754-e762	6.5	44	
201	The growing clinical spectrum of cerebral amyloid angiopathy. <i>Current Opinion in Neurology</i> , 2018 , 31, 28-35	7.1	43	
200	Estimating Total Cerebral Microinfarct Burden From Diffusion-Weighted Imaging. <i>Stroke</i> , 2015 , 46, 2129	963 ₇ 5	42	
199	Cortical superficial siderosis predicts early recurrent lobar hemorrhage. <i>Neurology</i> , 2016 , 87, 1863-1870	6.5	42	
198	The characteristics of superficial siderosis and convexity subarachnoid hemorrhage and clinical relevance in suspected cerebral amyloid angiopathy. <i>Cerebrovascular Diseases</i> , 2015 , 39, 278-86	3.2	40	
197	Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 22-1996. Cerebral hemorrhage in a 69-year-old woman receiving warfarin. <i>New England Journal of Medicine</i> , 1996 , 335, 189-96	59.2	40	
196	Blood-Brain Barrier Leakage and Microvascular Lesions in Cerebral Amyloid Angiopathy. <i>Stroke</i> , 2019 , 50, 328-335	6.7	39	
195	EAmyloid in CSF: Biomarker for preclinical cerebral amyloid angiopathy. <i>Neurology</i> , 2017 , 88, 169-176	6.5	38	
194	Iowa variant of familial Alzheimer\$ disease: accumulation of posttranslationally modified AbetaD23N in parenchymal and cerebrovascular amyloid deposits. <i>American Journal of Pathology</i> , 2010 , 176, 1841-54	5.8	38	
193	Lobar microbleeds are associated with a decline in executive functioning in older adults. <i>Cerebrovascular Diseases</i> , 2014 , 38, 377-83	3.2	37	
192	Revisiting Grade 3 Diffuse Axonal Injury: Not All Brainstem Microbleeds are Prognostically Equal. <i>Neurocritical Care</i> , 2017 , 27, 199-207	3.3	36	
191	Patient-specific decision-making for warfarin therapy in nonvalvular atrial fibrillation: how will screening with genetics and imaging help?. <i>Stroke</i> , 2008 , 39, 3308-15	6.7	36	
190	Evolution of DWI lesions in cerebral amyloid angiopathy: Evidence for ischemia. <i>Neurology</i> , 2017 , 89, 2136-2142	6.5	34	
189	Cognitive Profile and its Association with Neuroimaging Markers of Non-Demented Cerebral Amyloid Angiopathy Patients in a Stroke Unit. <i>Journal of Alzheimerh</i> Disease, 2016 , 52, 171-8	4.3	34	
188	Genome-wide association study of cerebral small vessel disease reveals established and novel loci. <i>Brain</i> , 2019 , 142, 3176-3189	11.2	34	

187	Perihematomal Edema Expansion Rates and Patient Outcomes in Deep and Lobar Intracerebral Hemorrhage. <i>Neurocritical Care</i> , 2017 , 26, 205-212	3.3	34
186	Apolipoprotein E genotype is associated with CT angiography spot sign in lobar intracerebral hemorrhage. <i>Stroke</i> , 2012 , 43, 2120-5	6.7	34
185	Sporadic Cerebral Amyloid Angiopathy: Pathophysiology, Neuroimaging Features, and Clinical Implications. <i>Seminars in Neurology</i> , 2016 , 36, 233-43	3.2	34
184	Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. <i>Alzheimerh</i> and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 191-204	5.2	33
183	Microbleeds on MRI are associated with microinfarcts on autopsy in cerebral amyloid angiopathy. <i>Neurology</i> , 2016 , 87, 1488-1492	6.5	31
182	Immunotherapy with ponezumab for probable cerebral amyloid angiopathy. <i>Annals of Clinical and Translational Neurology</i> , 2019 , 6, 795-806	5.3	30
181	Cortical Superficial Siderosis in Memory Clinic Patients: Further Evidence for Underlying Cerebral Amyloid Angiopathy. <i>Cerebrovascular Diseases</i> , 2016 , 41, 156-62	3.2	30
180	Abeta species, including IsoAsp23 Abeta, in Iowa-type familial cerebral amyloid angiopathy. <i>Acta Neuropathologica</i> , 2003 , 105, 252-8	14.3	30
179	Association of Apolipoprotein E With Intracerebral Hemorrhage Risk by Race/Ethnicity: A Meta-analysis. <i>JAMA Neurology</i> , 2019 , 76, 480-491	17.2	29
178	Dementia incidence and predictors in cerebral amyloid angiopathy patients without intracerebral hemorrhage. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2018 , 38, 241-249	7.3	29
177	Recurrent hemorrhage risk and mortality in hereditary and sporadic cerebral amyloid angiopathy. <i>Neurology</i> , 2016 , 87, 1482-1487	6.5	29
176	Cortical superficial siderosis and bleeding risk in cerebral amyloid angiopathy: A meta-analysis. <i>Neurology</i> , 2019 , 93, e2192-e2202	6.5	29
175	Rate of Contrast Extravasation on Computed Tomographic Angiography Predicts Hematoma Expansion and Mortality in Primary Intracerebral Hemorrhage. <i>Stroke</i> , 2015 , 46, 2498-503	6.7	28
174	Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy. <i>Acta Neuropathologica</i> , 2017 , 133, 409-415	14.3	28
173	Apolipoprotein E, statins, and risk of intracerebral hemorrhage. <i>Stroke</i> , 2013 , 44, 3013-7	6.7	28
172	Differential recognition of vascular and parenchymal beta amyloid deposition. <i>Neurobiology of Aging</i> , 2011 , 32, 1774-83	5.6	28
171	Different microvascular alterations underlie microbleeds and microinfarcts. <i>Annals of Neurology</i> , 2019 , 86, 279-292	9.4	27
170	Matrix metalloproteinase 9-mediated intracerebral hemorrhage induced by cerebral amyloid angiopathy. <i>Neurobiology of Aging</i> , 2015 , 36, 2963-2971	5.6	27

169	Modeling intracerebral hemorrhage growth and response to anticoagulation. PLoS ONE, 2012, 7, e4845	83.7	27
168	Sex differences in intracerebral hemorrhage expansion and mortality. <i>Journal of the Neurological Sciences</i> , 2017 , 379, 112-116	3.2	26
167	CT Angiography Spot Sign, Hematoma Expansion, and Outcome in Primary Pontine Intracerebral Hemorrhage. <i>Neurocritical Care</i> , 2016 , 25, 79-85	3.3	26
166	Cerebellar Hematoma Location: Implications for the Underlying Microangiopathy. <i>Stroke</i> , 2018 , 49, 207	-261 / 0	26
165	Small vessel disease burden in cerebral amyloid angiopathy without symptomatic hemorrhage. <i>Neurology</i> , 2017 , 88, 878-884	6.5	25
164	and cortical superficial siderosis in CAA: Meta-analysis and potential mechanisms. <i>Neurology</i> , 2019 , 93, e358-e371	6.5	25
163	Cerebral microbleeds in a multiethnic elderly community: demographic and clinical correlates. <i>Journal of the Neurological Sciences</i> , 2014 , 345, 125-30	3.2	25
162	Cortical localization of microbleeds in cerebral amyloid angiopathy: an ultra high-field 7T MRI study. Journal of Alzheimerh Disease, 2015 , 43, 1325-30	4.3	25
161	Cerebral microbleeds and macrobleeds: should they influence our recommendations for antithrombotic therapies?. <i>Current Cardiology Reports</i> , 2013 , 15, 425	4.2	25
160	Spot sign score predicts rapid bleeding in spontaneous intracerebral hemorrhage. <i>Emergency Radiology</i> , 2012 , 19, 195-202	3	25
159	Hemorrhagic stroke. <i>Neuroimaging Clinics of North America</i> , 2005 , 15, 259-72, ix	3	25
158	Small vessel disease and cognitive impairment: The relevance of central network connections. <i>Human Brain Mapping</i> , 2016 , 37, 2446-54	5.9	25
157	Anatomic pattern of intracerebral hemorrhage expansion: relation to CT angiography spot sign and hematoma center. <i>Stroke</i> , 2014 , 45, 1154-6	6.7	24
156	Hemorrhage recurrence risk factors in cerebral amyloid angiopathy: Comparative analysis of the overall small vessel disease severity score versus individual neuroimaging markers. <i>Journal of the Neurological Sciences</i> , 2017 , 380, 64-67	3.2	24
155	APOE Ivariants increase risk of warfarin-related intracerebral hemorrhage. <i>Neurology</i> , 2014 , 83, 1139-46	56.5	24
154	Burden of blood pressure-related alleles is associated with larger hematoma volume and worse outcome in intracerebral hemorrhage. <i>Stroke</i> , 2013 , 44, 321-6	6.7	24
153	Effects of apoE isoforms on beta-amyloid-induced matrix metalloproteinase-9 in rat astrocytes. <i>Brain Research</i> , 2006 , 1111, 222-6	3.7	24

151	Risk factors for computed tomography angiography spot sign in deep and lobar intracerebral hemorrhage are shared. <i>Stroke</i> , 2014 , 45, 1833-5	6.7	23
150	A phase 2 study of tramiprosate for cerebral amyloid angiopathy. <i>Alzheimer Disease and Associated Disorders</i> , 2006 , 20, 269-74	2.5	23
149	Significance of admission hypoalbuminemia in acute intracerebral hemorrhage. <i>Journal of Neurology</i> , 2017 , 264, 905-911	5.5	22
148	Association Between Immunosuppressive Treatment and Outcomes of Cerebral Amyloid Angiopathy-Related Inflammation. <i>JAMA Neurology</i> , 2020 , 77, 1261-1269	17.2	22
147	Progression of Brain Network Alterations in Cerebral Amyloid Angiopathy. <i>Stroke</i> , 2016 , 47, 2470-5	6.7	22
146	Early Magnetic Resonance Imaging and Cognitive Markers of Hereditary Cerebral Amyloid Angiopathy. <i>Stroke</i> , 2016 , 47, 3041-3044	6.7	22
145	Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-Ifrom the brain and retina with age and Alzheimers disease-Opportunities for Therapy. <i>Alzheimers and Dementia: Diagnosis,</i>	5.2	22
144	Assessment and Disease Monitoring, 2020 , 12, e12053 Hypertension and intracerebral hemorrhage recurrence among white, black, and Hispanic individuals. <i>Neurology</i> , 2018 , 91, e37-e44	6.5	21
143	APP Mutations in Cerebral Amyloid Angiopathy with or without Cortical Calcifications: Report of Three Families and alLiterature Review. <i>Journal of Alzheimerh Disease</i> , 2017 , 56, 37-46	4.3	20
142	Statins in Intracerebral Hemorrhage. Current Atherosclerosis Reports, 2015, 17, 46	6	20
141	Influences Hematoma Volume and Outcome in Spontaneous Intracerebral Hemorrhage. <i>Stroke</i> , 2018 , 49, 1618-1625	6.7	20
140	Cortical superficial siderosis and recurrent intracerebral hemorrhage risk in cerebral amyloid angiopathy: Large prospective cohort and preliminary meta-analysis. <i>International Journal of Stroke</i> , 2019 , 14, 723-733	6.3	20
139	Cerebral Cortical Microinfarcts on Magnetic Resonance Imaging and Their Association With Cognition in Cerebral Amyloid Angiopathy. <i>Stroke</i> , 2018 , 49, 2330-2336	6.7	20
138	Lymphopenia, Infectious Complications, and Outcome in Spontaneous Intracerebral Hemorrhage. <i>Neurocritical Care</i> , 2017 , 26, 160-166	3.3	19
137	Histopathology of diffusion imaging abnormalities in cerebral amyloid angiopathy. <i>Neurology</i> , 2019 , 92, e933-e943	6.5	19
136	Advances in Stroke 2017. <i>Stroke</i> , 2018 , 49, e174-e199	6.7	19
135	Effect of CTA Tube Current on Spot Sign Detection and Accuracy for Prediction of Intracerebral Hemorrhage Expansion. <i>American Journal of Neuroradiology</i> , 2016 , 37, 1781-1786	4.4	19
134	Integration of Computed Tomographic Angiography Spot Sign and Noncontrast Computed Tomographic Hypodensities to Predict Hematoma Expansion. <i>Stroke</i> , 2018 , 49, 2067-2073	6.7	19

133	Advancing diagnostic criteria for sporadic cerebral amyloid angiopathy: Study protocol for a multicenter MRI-pathology validation of Boston criteria v2.0. <i>International Journal of Stroke</i> , 2019 , 14, 956-971	6.3	18
132	Cerebellar Microbleed Distribution Patterns and Cerebral Amyloid Angiopathy. Stroke, 2019, 50, 1727-1	763 7 3	18
131	Plasma beta-amyloid peptide, transforming growth factor-beta 1, and risk for cerebral amyloid angiopathy. <i>Annals of the New York Academy of Sciences</i> , 2000 , 903, 144-9	6.5	18
130	Reliability of intracerebral hemorrhage classification systems: A systematic review. <i>International Journal of Stroke</i> , 2016 , 11, 626-36	6.3	18
129	Vascular changes in Iowa-type hereditary cerebral amyloid angiopathy. <i>Annals of the New York Academy of Sciences</i> , 2002 , 977, 245-51	6.5	17
128	Neuropathological correlates of cortical superficial siderosis in cerebral amyloid angiopathy. <i>Brain</i> , 2020 , 143, 3343-3351	11.2	17
127	Perivascular Spaces Volume in Sporadic and Hereditary (Dutch-Type) Cerebral Amyloid Angiopathy. <i>Stroke</i> , 2018 , 49, 1913-1919	6.7	16
126	Management of intracerebral hemorrhage. Current Atherosclerosis Reports, 2008, 10, 324-31	6	16
125	Subacute decline in serum lipids precedes the occurrence of primary intracerebral hemorrhage. <i>Neurology</i> , 2016 , 86, 2034-41	6.5	16
124	Spatial Signature of White Matter Hyperintensities in Stroke Patients. <i>Frontiers in Neurology</i> , 2019 , 10, 208	4.1	15
123	TOMM40 in Cerebral Amyloid Angiopathy Related Intracerebral Hemorrhage: Comparative Genetic Analysis with Alzheimer& Disease. <i>Translational Stroke Research</i> , 2012 , 3, 102-12	7.8	15
122	Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2020 , 40, 231-245	7.3	15
121	Vascular contributions to cognitive impairment and dementia: Research consortia that focus on etiology and treatable targets to lessen the burden of dementia worldwide. <i>Alzheimerh</i> and Dementia: Translational Research and Clinical Interventions, 2019 , 5, 789-796	6	15
120	MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols. <i>Alzheimerh</i> and <i>Dementia</i> , 2021 , 17, 716-725	1.2	15
119	2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association <i>Stroke</i> , 2022 , 101161STF	≀6 <mark>0</mark> 7000	000000
118	A 63-year-old man with headaches and behavioral deterioration. <i>Neurology</i> , 2007 , 68, 782-7	6.5	14
117	Advances in our Understanding of the Pathophysiology, Detection and Management of Cerebral Amyloid Angiopathy. <i>European Neurological Review</i> , 2012 , 7, 134-139	0.5	14
116	Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. <i>Neurocritical Care</i> . 2016 , 24, 342-52	3.3	14

115	Intracranial atherosclerosis and cerebral small vessel disease in intracerebral hemorrhage patients. Journal of the Neurological Sciences, 2016 , 369, 324-329	3.2	14
114	Cortical Superficial Siderosis Evolution. <i>Stroke</i> , 2019 , 50, 954-962	6.7	13
113	Embolic Stroke, Atrial Fibrillation, and Microbleeds: Is There a Role for Anticoagulation?. <i>Stroke</i> , 2016 , 47, 904-7	6.7	13
112	Amyloid imaging of dutch-type hereditary cerebral amyloid angiopathy carriers. <i>Annals of Neurology</i> , 2019 , 86, 616-625	9.4	13
111	Association of Cerebral Small Vessel Disease and Cognitive Decline After Intracerebral Hemorrhage. <i>Neurology</i> , 2021 , 96, e182-e192	6.5	13
110	Relationship between white matter connectivity loss and cortical thinning in cerebral amyloid angiopathy. <i>Human Brain Mapping</i> , 2017 , 38, 3723-3731	5.9	12
109	Convexity subarachnoid hemorrhage in lobar intracerebral hemorrhage: A prognostic marker. <i>Neurology</i> , 2020 , 94, e968-e977	6.5	12
108	Cerebral Microbleeds and the Effect of Intensive Blood Pressure Reduction on Hematoma Expansion and Functional Outcomes: A Secondary Analysis of the ATACH-2 Randomized Clinical Trial. <i>JAMA Neurology</i> , 2018 , 75, 850-859	17.2	12
107	Intracerebral hemorrhage. <i>Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn</i> , 2009 , 93, 767-90	3	12
106	White Matter Hyperintensities and Blood Pressure Lowering in Acute Intracerebral Hemorrhage: A Secondary Analysis of the ATACH-2 Trial. <i>Neurocritical Care</i> , 2020 , 32, 180-186	3.3	12
105	In vivo characterization of spontaneous microhemorrhage formation in mice with cerebral amyloid angiopathy. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2021 , 41, 82-91	7.3	12
104	MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols. <i>Alzheimerh</i> and <i>Dementia</i> , 2021 , 17, 704-715	1.2	12
103	Total small vessel disease burden and brain network efficiency in cerebral amyloid angiopathy. Journal of the Neurological Sciences, 2017 , 382, 10-12	3.2	11
102	The pattern and pace of hyperacute hemorrhage expansion. <i>Neurocritical Care</i> , 2012 , 17, 250-4	3.3	11
101	Histopathology of diffusion-weighted imaging-positive lesions in cerebral amyloid angiopathy. <i>Acta Neuropathologica</i> , 2020 , 139, 799-812	14.3	10
100	Screening for familial APP mutations in sporadic cerebral amyloid angiopathy. <i>PLoS ONE</i> , 2010 , 5, e139	49 .7	10
99	Cortical superficial siderosis progression in cerebral amyloid angiopathy: Prospective MRI study. <i>Neurology</i> , 2020 , 94, e1853-e1865	6.5	10
98	Association of Selective Serotonin Reuptake Inhibitor Use After Intracerebral Hemorrhage With Hemorrhage Recurrence and Depression Severity. <i>JAMA Neurology</i> , 2020 ,	17.2	10

(2020-2018)

97	Cardioembolic Stroke Risk and Recovery After Anticoagulation-Related Intracerebral Hemorrhage. <i>Stroke</i> , 2018 , 49, 2652-2658	6.7	10
96	Case records of the Massachusetts General Hospital. Case 22-2010. An 87-year-old woman with dementia and a seizure. <i>New England Journal of Medicine</i> , 2010 , 363, 373-81	59.2	9
95	Visuospatial Functioning in Cerebral Amyloid Angiopathy: A Pilot Study. <i>Journal of Alzheimerh</i> s <i>Disease</i> , 2017 , 56, 1223-1227	4.3	8
94	Special topic section: linkages among cerebrovascular, cardiovascular, and cognitive disorders: Preventing dementia by preventing stroke: The Berlin Manifesto. <i>International Journal of Stroke</i> , 2019 , 1747493019871915	6.3	8
93	Secondary Bleeding During Acute Experimental Intracerebral Hemorrhage. Stroke, 2019, 50, 1210-1215	6.7	8
92	Combining Imaging and Genetics to Predict Recurrence of Anticoagulation-Associated Intracerebral Hemorrhage. <i>Stroke</i> , 2020 , 51, 2153-2160	6.7	8
91	Incidence and Etiology of Microinfarcts in Patients with Ischemic Stroke. <i>Journal of Neuroimaging</i> , 2018 , 28, 406-411	2.8	8
90	Reducing available soluble Eamyloid prevents progression of cerebral amyloid angiopathy in transgenic mice. <i>Journal of Neuropathology and Experimental Neurology</i> , 2012 , 71, 1009-17	3.1	8
89	Impaired memory is more closely associated with brain beta-amyloid than leukoaraiosis in hypertensive patients with cognitive symptoms. <i>PLoS ONE</i> , 2018 , 13, e0191345	3.7	8
88	Cerebral Amyloid Angiopathy With Vascular Iron Accumulation and Calcification. <i>Stroke</i> , 2018 , 49, 2081	-260 / 87	8
87	Imaging the Acute Formation of a Cortical Microbleed in Cerebral Amyloid Angiopathy. <i>JAMA Neurology</i> , 2017 , 74, 120-121	17.2	7
86	Multiple Approaches to Diffusion Magnetic Resonance Imaging in Hereditary Cerebral Amyloid Angiopathy Mutation Carriers. <i>Journal of the American Heart Association</i> , 2019 , 8, e011288	6	7
85	COX-2 rs20417 Polymorphism Is Associated with Stroke and White Matter Disease. <i>Journal of Stroke and Cerebrovascular Diseases</i> , 2015 , 24, 1817-22	2.8	7
84	Rare Coding Variation and Risk of Intracerebral Hemorrhage. <i>Stroke</i> , 2015 , 46, 2299-301	6.7	7
83	Men Experience Higher Risk of Pneumonia and Death After Intracerebral Hemorrhage. <i>Neurocritical Care</i> , 2018 , 28, 77-82	3.3	7
82	Genetics of primary intracerebral hemorrhage. <i>Journal of Stroke and Cerebrovascular Diseases</i> , 2002 , 11, 265-71	2.8	7
81	Impact of Uncontrolled Hypertension at 3 Months After Intracerebral Hemorrhage. <i>Journal of the American Heart Association</i> , 2021 , 10, e020392	6	7
80	White matter atrophy in cerebral amyloid angiopathy. <i>Neurology</i> , 2020 , 95, e554-e562	6.5	6

79	Innovative Magnetic Resonance Imaging Markers of Hereditary Cerebral Amyloid Angiopathy at 7 Tesla. <i>Stroke</i> , 2018 , 49, 1518-1520	6.7	6
78	Hypernatremia at Hospital Discharge and Out of Hospital Mortality Following Primary Intracerebral Hemorrhage. <i>Neurocritical Care</i> , 2016 , 25, 110-6	3.3	6
77	Role of Vascular Disease in Alzheimer-Like Progressive Cognitive Impairment. <i>Stroke</i> , 2016 , 47, 577-80	6.7	6
76	Hematoma Expansion in Intracerebral Hemorrhage With Unclear Onset. <i>Neurology</i> , 2021 , 96, e2363-e23	T515	6
75	Cerebral Amyloid Angiopathy-Related Transient Focal Neurologic Episodes. <i>Neurology</i> , 2021 , 97, 231-23	% .5	6
74	Cerebral small vessel disease in patients with spontaneous cerebellar hemorrhage. <i>Journal of Neurology</i> , 2019 , 266, 625-630	5.5	6
73	Cognitive Impairment and Dementia After Stroke: Design and Rationale for the DISCOVERY Study. <i>Stroke</i> , 2021 , 52, e499-e516	6.7	6
7 ²	Seven-Year Experience From the National Institute of Neurological Disorders and Stroke-Supported Network for Excellence in Neuroscience Clinical Trials. <i>JAMA Neurology</i> , 2020 , 77, 755-763	17.2	5
71	APOE polymorphisms influence longitudinal lipid trends preceding intracerebral hemorrhage. <i>Neurology: Genetics</i> , 2016 , 2, e81	3.8	5
70	Predictors for Late Post-Intracerebral Hemorrhage Dementia in Patients with Probable Cerebral Amyloid Angiopathy. <i>Journal of Alzheimerl</i> Disease, 2019 , 71, 435-442	4.3	5
69	genotype, hypertension severity and outcomes after intracerebral haemorrhage. <i>Brain Communications</i> , 2019 , 1, fcz018	4.5	5
68	Off-label use of aducanumab for cerebral amyloid angiopathy. <i>Lancet Neurology, The</i> , 2021 , 20, 596-597	24.1	5
67	Hereditary cerebral amyloid angiopathy, Piedmont-type mutation. Neurology: Genetics, 2020, 6, e411	3.8	4
66	Mystery case: cerebral amyloid angiopathy-related inflammation. <i>Neurology</i> , 2014 , 83, 1678-9	6.5	4
65	William M. Feinberg Award for Excellence in Clinical Stroke: Big Pictures and Small Vessels. <i>Stroke</i> , 2017 , 48, 2628-2631	6.7	4
64	Cerebral Amyloid Angiopathy 2004 , 693-705		4
63	Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy. <i>American Journal of Neuroradiology</i> , 2021 , 42, 875-881	4.4	4
62	Cost and Utility of Microbiological Cultures Early After Intensive Care Unit Admission for Intracerebral Hemorrhage. <i>Neurocritical Care</i> , 2017 , 26, 58-63	3.3	3

61	Cerebral Amyloid Angiopathy534-544		3
60	CT-Visible Convexity Subarachnoid Hemorrhage is Associated With Cortical Superficial Siderosis and Predicts Recurrent ICH. <i>Neurology</i> , 2021 , 96, e986-e994	6.5	3
59	Deep learning assisted quantitative assessment of histopathological markers of Alzheimer's disease and cerebral amyloid angiopathy. <i>Acta Neuropathologica Communications</i> , 2021 , 9, 141	7.3	3
58	A Roadmap for Developing Plasma Diagnostic and Prognostic Biomarkers of Cerebral Cavernous Angioma With Symptomatic Hemorrhage (CASH). <i>Neurosurgery</i> , 2021 , 88, 686-697	3.2	3
57	Intracerebral Hemorrhage 2016 , 466-515.e12		2
56	rTMS for treatment of depression in a patient with cerebral amyloid angiopathy: a case report on safety and efficacy. <i>Brain Stimulation</i> , 2014 , 7, 495-7	5.1	2
55	Intracerebral hemorrhage: introduction. <i>Stroke</i> , 2010 , 41, S91	6.7	2
54	Perivascular space dilation is associated with vascular amyloid-laccumulation in the overlying cortex <i>Acta Neuropathologica</i> , 2021 , 143, 331	14.3	2
53	Abstract 15: Medication Inadequacy Accounts for Two-Third of Uncontrolled Hypertension Following Intracerebral Hemorrhage in a Multinational Study. <i>Stroke</i> , 2020 , 51,	6.7	2
52	Rare Missense Functional Variants at and in Sporadic Intracerebral Hemorrhage. <i>Neurology</i> , 2021 ,	6.5	2
51	Intensive Blood Pressure Lowering and DWI Lesions in Intracerebral Hemorrhage: Exploratory Analysis of the ATACH-2 Randomized Trial. <i>Neurocritical Care</i> , 2021 , 1	3.3	2
50	Cerebral Microbleeds and Cerebrovascular Reactivity in the General Population: The EDAN Study. Journal of Alzheimerls Disease, 2016, 53, 497-503	4.3	2
49	Blood pressure burden and outcome in warfarin-related intracerebral hemorrhage. <i>International Journal of Stroke</i> , 2016 , 11, 898-909	6.3	2
48	Association of Memory Impairment With Concomitant Tau Pathology in Patients With Cerebral Amyloid Angiopathy. <i>Neurology</i> , 2021 , 96, e1975-e1986	6.5	2
47	Lacunes, Microinfarcts, and Vascular Dysfunction in Cerebral Amyloid Angiopathy. <i>Neurology</i> , 2021 , 96, e1646-e1654	6.5	2
46	DT-02-05: MARKVCID PHASE II: PRIORITIZED CANDIDATE SMALL VESSEL VCID BIOMARKERS SELECTED FOR INDEPENDENT MULTI-SITE TESTING AND VALIDATION 2018 , 14, P1670-P1671		2
45	Cerebral amyloid angiopathy is associated with decreased functional brain connectivity. <i>NeuroImage: Clinical</i> , 2021 , 29, 102546	5.3	2
44	Long-Term Blood Pressure Variability and Major Adverse Cardiovascular and Cerebrovascular Events After Intracerebral Hemorrhage <i>Journal of the American Heart Association</i> , 2022 , e024158	6	2

43	Latent profile analysis of cognitive decline and depressive symptoms after intracerebral hemorrhage. <i>BMC Neurology</i> , 2021 , 21, 481	3.1	2
42	Chaplaincy Visitation and Spiritual Care after Intracerebral Hemorrhage. <i>Journal of Health Care Chaplaincy</i> , 2017 , 23, 156-166	1.8	1
41	Developing biomarkers for cerebral amyloid angiopathy trials: do potential disease phenotypes hold promise? - authorsSreply. <i>Lancet Neurology, The</i> , 2014 , 13, 540	24.1	1
40	O1D3D1: Linking declining levels of plasma beta-amyloid 42 to AlzheimerS disease: The role of cerebral microbleeds 2013, 9, P129-P129		1
39	C. Miller Fisher: An Appreciation. <i>Stroke</i> , 2013 , 44,	6.7	1
38	Cerebral amyloid angiopathy41-57		1
37	Intracerebral Hemorrhage. Stroke, 2007, 38, 746-747	6.7	1
36	Effect of vascular amyloid on white matter disease is mediated by vascular dysfunction in cerebral amyloid angiopathy <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2022 , 271678X221076571	7.3	1
35	Vascular Contributions to Brain Health: Cross-Cutting Themes Stroke, 2022 , STROKEAHA121034921	6.7	1
34	Plasma Amyloid-Beta Levels in a Pre-Symptomatic Dutch-Type Hereditary Cerebral Amyloid Angiopathy Pedigree: A Cross-Sectional and Longitudinal Investigation. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1
33	Cerebral microbleeds and prediction of intracranial haemorrhage. Lancet Neurology, The, 2021, 20, 252	- 254 1	1
32	Contribution of Racial and Ethnic Differences in Cerebral Small Vessel Disease Subtype and Burden to Risk of Cerebral Hemorrhage Recurrence. <i>Neurology</i> , 2021 , 96, e2469-e2480	6.5	1
31	Occipital Cortical Calcifications in Cerebral Amyloid Angiopathy. <i>Stroke</i> , 2021 , 52, 1851-1855	6.7	1
30	Presymptomatic Dutch-Type Hereditary Cerebral Amyloid Angiopathy-Related Blood Metabolite Alterations. <i>Journal of Alzheimerl</i> Disease, 2021 , 79, 895-903	4.3	1
29	Cerebral Small Vessel Disease and Depression Among Intracerebral Hemorrhage Survivors. <i>Stroke</i> , 2021 , STROKEAHA121035488	6.7	1
28	Computed Tomography Angiography Spot Sign, Hematoma Expansion, and Functional Outcome in Spontaneous Cerebellar Intracerebral Hemorrhage. <i>Stroke</i> , 2021 , 52, 2902-2909	6.7	1
27	Phantom-based standardization of CT angiography images for spot sign detection. <i>Neuroradiology</i> , 2017 , 59, 839-844	3.2	0
26	Histopathological correlates of haemorrhagic lesions on magnetic resonance imaging in immunized Alzheimer's disease cases <i>Brain Communications</i> , 2022 , 4, fcac021	4.5	O

25	Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge. <i>NeuroImage</i> , 2021 , 245, 118754	7.9	О
24	Decreased Basal Ganglia Volume in Cerebral Amyloid Angiopathy. <i>Journal of Stroke</i> , 2021 , 23, 223-233	5.6	О
23	Idiopathic primary intraventricular hemorrhage and cerebral small vessel disease. <i>International Journal of Stroke</i> , 2021 , 17474930211043957	6.3	0
22	Cerebrospinal fluid levels of the neurotrophic factor neuroleukin are increased in early AlzheimerS disease, but not in cerebral amyloid angiopathy. <i>Alzheimerls Research and Therapy</i> , 2021 , 13, 160	9	О
21	Longitudinal Progression of Magnetic Resonance Imaging Markers and Cognition in Dutch-Type Hereditary Cerebral Amyloid Angiopathy <i>Stroke</i> , 2022 , 101161STROKEAHA121035826	6.7	О
20	Lobar intracerebral hemorrhage and risk of subsequent uncontrolled blood pressure. <i>European Stroke Journal</i> ,239698732210944	5.6	O
19	Memory impairment is a clinical marker of tau pathology in cerebral amyloid angiopathy. <i>Alzheimerl</i> s and <i>Dementia</i> , 2020 , 16, e037524	1.2	
18	Neuropathological correlates of cortical superficial siderosis in cerebral amyloid angiopathy. <i>Alzheimerl</i> s and Dementia, 2020 , 16, e041502	1.2	
17	MRI-histopathology correlations of amyloid-related imaging abnormalities (ARIA) in postmortem human brain samples. <i>Alzheimerl</i> s and <i>Dementia</i> , 2020 , 16, e041579	1.2	
16	Strategic corpus callosum lesions are associated with worse cognitive performance in cerebral amyloid angiopathy. <i>Alzheimerh and Dementia</i> , 2020 , 16, e042464	1.2	
15	Cerebral Small Vessel Diseases and Sleep Related Strokes. <i>Journal of Stroke and Cerebrovascular Diseases</i> , 2020 , 29, 104606	2.8	
14	S1-01-03: CEREBRAL AMYLOID ANGIOPATHY AND ALZHEIMERS DISEASE 2014 , 10, P122-P122		
13	P1-218: Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces 2015 , 11, P435-P435		
12	Cerebral Microbleeds, Small-Vessel Disease of the Brain, Hypertension, and Cognition 2011 , 225-235		
11	Cerebral microbleeds in relation to cerebral amyloidangiopathy109-116		
10	Maximizing Brain Health After Hemorrhagic Stroke: Bugher Foundation Centers of Excellence <i>Stroke</i> , 2022 , STROKEAHA121036197	6.7	
9	Imaging markers of intracerebral hemorrhage expansion in patients with unclear symptom onset <i>International Journal of Stroke</i> , 2022 , 17474930211068662	6.3	
8	EFFECT OF PASSIVE IMMUNOTHERAPY ON THE RATE OF PROGRESSION OF CEREBRAL AMYLOID ANGIOPATHY (CAA) IN TRANSGENIC MICE. <i>FASEB Journal</i> , 2007 , 21, A73	0.9	

7	Effect of Gelsolin on Cerebral Amyloid Angiopathy (CAA) in Transgenic Mice. <i>FASEB Journal</i> , 2008 , 22, 167.9	0.9
6	Cerebral Microbleeds, Small-Vessel Disease of the Brain, Hypertension, and Cognition 2016 , 301-313	
5	IC-P-051: BLOOD-BRAIN BARRIER LEAKAGE AND MICROVASCULAR LESIONS IN CEREBRAL AMYLOID ANGIOPATHY: A POSTMORTEM MRI AND HISTOPATHOLOGY STUDY 2018 , 14, P50-P50	
4	Lack of racial and ethnic-based differences in acute care delivery in intracerebral hemorrhage. <i>International Journal of Emergency Medicine</i> , 2021 , 14, 6	3.9
3	Elevated expression of urokinase plasminogen activator in rodent models and patients with cerebral amyloid angiopathy <i>Neuropathology and Applied Neurobiology</i> , 2022 , e12804	5.2
2	Histopathology of Cerebral Microinfarcts and Microbleeds in Spontaneous Intracerebral Hemorrhage <i>Translational Stroke Research</i> , 2022 , 1	7.8
1	The Impact of ApoE and FOXO3 Genotype on the Risk of Intracerebral Hemorrhage Among American Men of Japanese Ancestry. <i>Innovation in Aging</i> , 2021 , 5, 366-366	0.1