Josip TambaÄa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8039312/publications.pdf

Version: 2024-02-01

840776 580821 45 632 11 25 citations h-index g-index papers 46 46 46 394 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow. SIAM Journal on Applied Mathematics, 2006, 67, 164-193.	1.8	97
2	Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. Journal of Computational Physics, 2013, 235, 515-541.	3.8	92
3	Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics, and Experimental Validation. Annals of Biomedical Engineering, 2006, 34, 575-592.	2.5	84
4	Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries. Multiscale Modeling and Simulation, 2005, 3, 559-596.	1.6	46
5	Derivation and Justification of the Models of Rods and Plates From Linearized Three-Dimensional Micropolar Elasticity. Journal of Elasticity, 2006, 84, 131-152.	1.9	35
6	LINEAR CURVED ROD MODEL: GENERAL CURVE. Mathematical Models and Methods in Applied Sciences, 2001, 11, 1237-1252.	3.3	33
7	Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Computer Methods in Applied Mechanics and Engineering, 2019, 350, 679-700.	6.6	33
8	DERIVATION AND JUSTIFICATION OF A CURVED ROD MODEL. Mathematical Models and Methods in Applied Sciences, 1999, 09, 991-1014.	3.3	29
9	A two-dimensional effective model describing fluid–structure interaction in blood flow: analysis, simulation and experimental validation. Comptes Rendus - Mecanique, 2005, 333, 867-883.	2.1	20
10	Mechanical behavior of fully expanded commercially available endovascular coronary stents. Texas Heart Institute Journal, 2011, 38, 491-501.	0.3	16
11	Integrated Stent Models Based on Dimension Reduction: Review and Future Perspectives. Annals of Biomedical Engineering, 2016, 44, 604-617.	2.5	13
12	A new linear Naghdi type shell model for shells with little regularity. Applied Mathematical Modelling, 2016, 40, 10549-10562.	4.2	11
13	Existence theorem for nonlinear micropolar elasticity. ESAIM - Control, Optimisation and Calculus of Variations, 2010, 16, 92-110.	1.3	10
14	A New Linear Shell Model for Shells with Little Regularity. Journal of Elasticity, 2014, 117, 163-188.	1.9	9
15	Derivation of the nonlinear bending–torsion model for a junction of elastic rods. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2012, 142, 633-664.	1.2	8
16	Derivation of a Poroelastic Flexural Shell Model. Multiscale Modeling and Simulation, 2016, 14, 364-397.	1.6	8
17	3D structure–2D plate interaction model. Mathematics and Mechanics of Solids, 2019, 24, 3354-3377.	2.4	8
18	One-dimensional approximations of the eigenvalue problem of curved rods. Mathematical Methods in the Applied Sciences, 2001, 24, 927-948.	2.3	7

#	Article	IF	Citations
19	Derivation of the model of elastic curved rods from three-dimensional micropolar elasticity. Annali Dell'Universita Di Ferrara, 2007, 53, 109-133.	1.3	6
20	Derivation of a model of nonlinear micropolar plate. Annali Dell'Universita Di Ferrara, 2008, 54, 319-333.	1.3	6
21	A Dimension-Reduction Based Coupled Model of Mesh-Reinforced Shells. SIAM Journal on Applied Mathematics, 2017, 77, 744-769.	1.8	6
22	Analysis of a linear 3D fluid–mesh–shell interaction problem. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	1.4	6
23	Evolution model of linear micropolar plate. Annali Dell'Universita Di Ferrara, 2007, 53, 417-435.	1.3	4
24	On a model of a flexural prestressed shell. Mathematical Methods in the Applied Sciences, 2015, 38, 5231-5241.	2.3	4
25	Nonlinear bending-torsion model for curved rods with little regularity. Mathematics and Mechanics of Solids, 2017, 22, 708-717.	2.4	4
26	Direct solution method for the equilibrium problem for elastic stents. Numerical Linear Algebra With Applications, 2019, 26, e2231.	1.6	4
27	Optimal design of vascular stents using a network of 1D slender curved rods. Computer Methods in Applied Mechanics and Engineering, 2022, 394, 114853.	6.6	4
28	A comparison between fractured Xience-like and Palmaz-like stents using a novel computational model., 2009, 2009, 1106-8.		3
29	Semicontinuity theorem in the micropolar elasticity. ESAIM - Control, Optimisation and Calculus of Variations, 2010, 16, 337-355.	1.3	3
30	One-dimensional quasistatic model of biodegradable elastic curved rods. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 2759-2785.	1.4	3
31	Derivation of a poroelastic elliptic membrane shell model. Applicable Analysis, 2019, 98, 136-161.	1.3	3
32	Evolution Model for Linearized Micropolar Plates byÂtheÂFourier Method. Journal of Elasticity, 2009, 96, 129-154.	1.9	2
33	A biodegradable elastic stent model. Mathematics and Mechanics of Solids, 2019, 24, 2591-2618.	2.4	2
34	A Naghdi Type Nonlinear Model for Shells with Little Regularity. Journal of Elasticity, 2020, 142, 447-494.	1.9	2
35	Mathematical model of heat transfer through a conductive pipe. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 627-658.	1.9	2
36	A Model of Irregular Curved Rods. , 2002, , 289-299.		2

#	Article	IF	CITATIONS
37	Mixed formulation of the one-dimensional equilibrium model for elastic stents. Rad Hrvatske Akademije Znanosti I Umjetnosti, Matematicke Znanosti, 2017, 56, 219-240.	0.4	2
38	Relaxation Theorem and Lower-Dimensional Models in Micropolar Elasticity. Mathematics and Mechanics of Solids, 2010, 15, 812-853.	2.4	1
39	Derivation of the Linear Elastic String Model from Three-Dimensional Elasticity. Journal of Elasticity, 2013, 111, 41-65.	1.9	1
40	Numerical investigation of the 2d–1d structure interaction model. Mathematics and Mechanics of Solids, 2021, 26, 1876-1895.	2.4	1
41	Preconditioning the Quad Dominant Mesh Generator for Ship Structural Analysis. Algorithms, 2022, 15, 2.	2.1	1
42	Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures. Applicable Analysis, 0, , 1-30.	1.3	1
43	Derivation of a linear prestressed elastic rod model from three-dimensional elasticity. Mathematics and Mechanics of Solids, 2015, 20, 1215-1233.	2.4	0
44	Iterative methods for solving a poroelastic shell model of Naghdi's type. Mathematical Methods in the Applied Sciences, 2017, 40, 4425-4435.	2.3	0
45	An Open-Source Processing Pipeline for Quad-Dominant Mesh Generation for Class-Compliant Ship Structural Analysis. Journal of Marine Science and Engineering, 2022, 10, 209.	2.6	0