Ruy A Louzada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8037765/publications.pdf

Version: 2024-02-01

430442 500791 31 857 18 28 citations h-index g-index papers 31 31 31 1550 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nutrient Sensor mTORC1 Regulates Insulin Secretion by Modulating \hat{I}^2 -Cell Autophagy. Diabetes, 2022, 71, 453-469.	0.3	6
2	Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E133-E144.	1.8	3
3	NADPH oxidase DUOX1 sustains TGF- \hat{l}^21 signalling and promotes lung fibrosis. European Respiratory Journal, 2021, 57, 1901949.	3.1	30
4	Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants, 2021, 10, 537.	2.2	72
5	3,5â€Diiodothyronine protects against cardiac ischaemia–reperfusion injury in male rats. Experimental Physiology, 2021, 106, 2185-2197.	0.9	2
6	Muscle Redox Signaling: Engaged in Sickness and in Health. Antioxidants and Redox Signaling, 2020, 33, 539-541.	2.5	3
7	Redox Signaling in Widespread Health Benefits of Exercise. Antioxidants and Redox Signaling, 2020, 33, 745-760.	2.5	31
8	Dual oxidase 1 limits the IFNÎ ³ -associated antitumor effect of macrophages. , 2020, 8, e000622.		17
9	Selective modification of a native protein in a patient tissue homogenate using palladium nanoparticles. Chemical Communications, 2019, 55, 15121-15124.	2.2	4
10	HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biology, 2018, 15, 97-108.	3.9	62
11	Conformation of the N-Terminal Ectodomain Elicits Different Effects on DUOX Function: A Potential Impact on Congenital Hypothyroidism Caused by a H2O2 Production Defect. Thyroid, 2018, 28, 1052-1062.	2.4	9
12	Similarities and Differences in the Peripheral Actions of Thyroid Hormones and Their Metabolites. Frontiers in Endocrinology, 2018, 9, 394.	1.5	42
13	Intense physical exercise potentiates glucose inhibitory effect over food intake of male Wistar rats. Experimental Physiology, 2018, 103, 1076-1086.	0.9	3
14	Dissecting thyroid hormone transport and metabolism in dendritic cells. Journal of Endocrinology, 2017, 232, 337-350.	1.2	12
15	Effect of thimerosal on thyroid hormones metabolism in rats. Endocrine Connections, 2017, 6, 741-747.	0.8	4
16	DUOX2 Mutations Are Associated With Congenital Hypothyroidism With Ectopic Thyroid Gland. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4060-4071.	1.8	48
17	Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. International Journal of Nanomedicine, 2017, Volume 12, 779-793.	3.3	65
18	Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	33

#	Article	IF	CITATIONS
19	Thyroid hormone activation by typeÂ2 deiodinase mediates exerciseâ€induced peroxisome proliferatorâ€activated receptorâ€Î³ coactivatorâ€Îα expression in skeletal muscle. Journal of Physiology, 2016, 594, 5255-5269.	1.3	37
20	DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radical Biology and Medicine, 2016, 99, 244-258.	1.3	73
21	Sustained IGF-1 Secretion by Adipose-Derived Stem Cells Improves Infarcted Heart Function. Cell Transplantation, 2016, 25, 1609-1622.	1.2	39
22	Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release. PLoS ONE, 2015, 10, e0122556.	1.1	8
23	When an Intramolecular Disulfide Bridge Governs the Interaction of DUOX2 with Its Partner DUOXA2. Antioxidants and Redox Signaling, 2015, 23, 724-733.	2.5	29
24	Administration of 3,5â€diiodothyronine (3,5â€₹2) causes central hypothyroidism and stimulates thyroidâ€sensitive tissues. Journal of Endocrinology, 2014, 221, 415-427.	1.2	78
25	A Change in Liver Metabolism but Not in Brown Adipose Tissue Thermogenesis Is an Early Event in Ovariectomy-Induced Obesity in Rats. Endocrinology, 2014, 155, 2881-2891.	1.4	32
26	Type 2 iodothyronine deiodinase is upregulated in rat slow- and fast-twitch skeletal muscle during cold exposure. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1020-E1029.	1.8	26
27	Diabetes Mellitus Increases Reactive Oxygen Species Production in the Thyroid of Male Rats. Endocrinology, 2013, 154, 1361-1372.	1.4	30
28	Decreased Serum T3 after an Exercise Session is Independent of Glucocorticoid Peak. Hormone and Metabolic Research, 2013, 45, 893-899.	0.7	12
29	Blunted Response of Pituitary Type 1 and Brown Adipose Tissue Type 2 Deiodinases to Swimming Training in Ovariectomized Rats. Hormone and Metabolic Research, 2012, 44, 797-803.	0.7	25
30	Granulocyte Colony Stimulating Factor in the Treatment of Cardiac Ischemic Disease. A Decade has Passed: Is it Time to Give Up?. Cardiovascular Drugs and Therapy, 2011, 25, 191-195.	1.3	1
31	Granulocyte-colony Stimulating Factor Treatment of Chronic Myocardial Infarction. Cardiovascular Drugs and Therapy, 2010, 24, 121-130.	1.3	21