Gabriele E Schaumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8037234/publications.pdf

Version: 2024-02-01

76326 64796 6,952 144 40 79 citations h-index g-index papers 151 151 151 7814 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Natural TiO ₂ -Nanoparticles in Soils: A Review on Current and Potential Extraction Methods. Critical Reviews in Analytical Chemistry, 2022, 52, 735-755.	3.5	3
2	Are agricultural plastic covers a source of plastic debris in soil? A first screening study. Soil, 2022, 8, 31-47.	4.9	17
3	Fusarium Mycotoxins in Maize Field Soils: Method Validation and Implications for Sampling Strategy. Toxins, 2022, 14, 130.	3.4	5
4	Effects of Plastic versus Straw Mulching Systems on Soil Microbial Community Structure and Enzymes in Strawberry Cultivation. Soil Systems, 2022, 6, 21.	2.6	10
5	How does multiannual plastic mulching in strawberry cultivation influence soil fungi and mycotoxin occurrence in soil?. Mycotoxin Research, 2022, , 1.	2.3	O
6	The contribution of microbial activity to soil–water interactions and soil microstructural stability of a silty loam soil under moisture dynamics. Geoderma, 2022, 417, 115822.	5.1	6
7	Influential parameters of surface waters on the formation of coating on TiO ₂ nanoparticles under natural conditions. Environmental Science: Nano, 2021, 8, 3153-3166.	4.3	1
8	Agricultural mulching and fungicidesâ€"impacts on fungal biomass, mycotoxin occurrence, and soil organic matter decomposition. Environmental Science and Pollution Research, 2021, 28, 36535-36550.	5.3	12
9	Toward Balancing the Pros and Cons of Spreading Olive Mill Wastewater in Irrigated Olive Orchards. Processes, 2021, 9, 780.	2.8	6
10	Flood Pulse Irrigation of Meadows Shapes Soil Chemical and Microbial Parameters More Than Mineral Fertilization. Soil Systems, 2021, 5, 24.	2.6	6
11	Validation of a Simple and Reliable Method for the Determination of Aflatoxins in Soil and Food Matrices. ACS Omega, 2021, 6, 18684-18693.	3.5	8
12	Multiannual soil mulching in agriculture: analysis of biogeochemical soil processes under plastic and straw mulches in a 3-year field study in strawberry cultivation. Journal of Soils and Sediments, 2021, 21, 3733-3752.	3.0	11
13	Distribution of engineered Ag nanoparticles in the aquatic-terrestrial transition zone: a long-term indoor floodplain mesocosm study. Environmental Science: Nano, 2021, 8, 1771-1785.	4.3	1
14	Validation of a field deployable reactor for <i>in situ</i> formation of NOM-engineered nanoparticle corona. Environmental Science: Nano, 2020, 7, 486-500.	4.3	5
15	Effect of matric potential and soil-water-hydrogel interactions on biohydrogel-induced soil microstructural stability. Geoderma, 2020, 362, 114142.	5.1	14
16	Influence of the physico-chemical properties of root mucilage and model substances on the microstructural stability of sand. Biogeochemistry, 2020, 147, 35-52.	3.5	18
17	Analysis of biogeochemical processes in plastic-covered soil during establishment period in strawberry cultivation. SN Applied Sciences, 2020, 2, 1.	2.9	3
18	Morphology, structure, and composition of sulfidized silver nanoparticles and their aggregation dynamics in river water. Science of the Total Environment, 2020, 739, 139989.	8.0	20

#	Article	IF	CITATIONS
19	A new approach for repeated tip-sample relocation for AFM imaging of nano and micro sized particles and cells in liquid environment. Ultramicroscopy, 2020, 211, 112945.	1.9	9
20	A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2020, 147, 104803.	5.5	89
21	Effects of hydrophobicity-based fractions of Pony Lake fulvic acid on the colloidal stability and dissolution of oppositely charged surface-coated silver nanoparticles. Environmental Chemistry, 2020, 17, 400.	1.5	4
22	Spatiotemporal distribution of silver and silver-containing nanoparticles in a prealpine lake in relation to the discharge from a wastewater treatment plant. Science of the Total Environment, 2019, 696, 134034.	8.0	28
23	Potential of NMR relaxometry to unravel the properties of mucilage in several pore sizes. Geoderma, 2019, 340, 269-278.	5.1	7
24	Biodegradation and photooxidation of phenolic compounds in soilâ€"A compound-specific stable isotope approach. Chemosphere, 2019, 230, 210-218.	8.2	13
25	Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene) Tj ETQq1 1 C).78 4 214 r	gB Ŧ ¢Overloc
26	Influence of water molecule bridges on sequestration of phenol in soil organic matter of sapric histosol. Environmental Chemistry, 2019, 16, 541.	1.5	3
27	Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agricultural Water Management, 2019, 213, 324-335.	5.6	70
28	Gel formation mechanism and gel properties controlled by Ca ²⁺ in chia seed mucilage and model substances. Journal of Plant Nutrition and Soil Science, 2019, 182, 92-103.	1.9	27
29	Considerations on crossâ€linking by bivalent cations in soil organic matter with low exchange capacity. Journal of Plant Nutrition and Soil Science, 2018, 181, 441-452.	1.9	6
30	Determination of quantitative poreâ€size distribution of soils with ¹ H NMR relaxometry. European Journal of Soil Science, 2018, 69, 393-406.	3.9	34
31	Links between nanoscale and macroscale surface properties of natural root mucilage studied by atomic force microscopy and contact angle. Journal of Colloid and Interface Science, 2018, 516, 446-455.	9.4	13
32	Implications of Pony Lake Fulvic Acid for the Aggregation and Dissolution of Oppositely Charged Surface-Coated Silver Nanoparticles and Their Ecotoxicological Effects on <i>Daphnia magna</i> Environmental Science & Daphnia magna	10.0	39
33	Nanoparticles in the environment: where do we come from, where do we go to?. Environmental Sciences Europe, 2018, 30, 6.	5.5	595
34	Effect of mucilage on water properties in the rhizosphere monitored by 1 H-NMR relaxometry. Microporous and Mesoporous Materials, 2018, 269, 47-50.	4.4	12
35	lon-induced modification of the sucrose network and its impact on melting of freeze-dried liposomes. DSC and molecular dynamics study. Chemistry and Physics of Lipids, 2018, 210, 38-46.	3.2	10
36	Cation binding in a soil with low exchange capacity: Implication for the structural rigidity of soil organic matter. Journal of Plant Nutrition and Soil Science, 2018, 181, 453-461.	1.9	2

#	Article	IF	CITATIONS
37	Extraction and characterization methods for titanium dioxide nanoparticles from commercialized sunscreens. Environmental Science: Nano, 2018, 5, 191-202.	4.3	33
38	Formation of Water Molecule Bridges Governs Water Sorption Mechanisms in Soil Organic Matter. Langmuir, 2018, 34, 12174-12182.	3.5	8
39	The contribution of various organic matter fractions to soil–water interactions and structural stability of an agriculturally cultivated soil. Journal of Plant Nutrition and Soil Science, 2018, 181, 586-599.	1.9	19
40	Quantitative Analysis of Poly(ethylene terephthalate) Microplastics in Soil via Thermogravimetry–Mass Spectrometry. Analytical Chemistry, 2018, 90, 8793-8799.	6.5	122
41	Retention and remobilization mechanisms of environmentally aged silver nanoparticles in an artificial riverbank filtration system. Science of the Total Environment, 2018, 645, 192-204.	8.0	26
42	Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial freshwater biofilms. PLoS ONE, 2018, 13, e0199132.	2.5	27
43	Biohydrogel induced soil–water interactions: how to untangle the gel effect? A review. Journal of Plant Nutrition and Soil Science, 2017, 180, 121-141.	1.9	37
44	Influence of organic chemicals on aliphatic crystallites analyzed in whole soils. Geoderma, 2017, 291, 40-46.	5.1	8
45	Land disposal of olive mill wastewater enhances ability of soil to sorb diuron: Temporal persistence, and the effects of soil depth and application season. Agriculture, Ecosystems and Environment, 2017, 236, 43-51.	5.3	7
46	The effect of <scp>pH</scp> modification on wetting kinetics of a naturally waterâ€repellent coniferous forest soil. European Journal of Soil Science, 2017, 68, 317-326.	3.9	6
47	Fractionation of copper and uranium in organic and conventional vineyard soils and adjacent stream sediments studied by sequential extraction. Journal of Soils and Sediments, 2017, 17, 1092-1100.	3.0	22
48	Influence of Organic Chemicals on Water Molecule Bridges in Soil Organic Matter of a Sapric Histosol. Journal of Physical Chemistry A, 2017, 121, 2367-2376.	2.5	11
49	Effect of water entrapment by a hydrogel on the microstructural stability of artificial soils with various clay content. Plant and Soil, 2017, 414, 181-198.	3.7	17
50	Effects of olive oil mill wastewater on chemical, microbiological, and physical properties of soil incubated under four different climatic conditions. Biology and Fertility of Soils, 2017, 53, 89-102.	4.3	10
51	The fate of organic matter brought into soil by olive mill wastewater application at different seasons. Journal of Soils and Sediments, 2017, 17, 901-916.	3.0	8
52	Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 2017, 53, 9-22.	4.3	67
53	Effects of olive mill wastewater disposal on soil: Interaction mechanisms during different seasons. Journal of Hydrology and Hydromechanics, 2016, 64, 176-195.	2.0	17
54	Physical long-term regeneration dynamics of soil organic matter as followed by 1H solid-state NMR methods. Environmental Chemistry, 2016, 13, 50.	1.5	7

#	Article	IF	CITATIONS
55	Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. TrAC - Trends in Analytical Chemistry, 2016, 84, 107-120.	11.4	60
56	The relation of structural mobility and water sorption of soil organic matter studied by 1 H and 13 C solid-state NMR. Geoderma, 2016, 284, 144-151.	5.1	9
57	Dehydration of \hat{l} ±-oxalic acid dihydrate: Structural, spectroscopic and thermal study with implications on the disruption of water molecular bridges in soil organic matter. Thermochimica Acta, 2016, 643, 73-82.	2.7	10
58	Synthesis, characterization, and ecotoxicity of CeO2 nanoparticles with differing properties. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	13
59	Linking atomic force microscopy with nanothermal analysis to assess microspatial distribution of material characteristics in young soils. Journal of Plant Nutrition and Soil Science, 2016, 179, 48-59.	1.9	5
60	Transport of soil-aged silver nanoparticles in unsaturated sand. Journal of Contaminant Hydrology, 2016, 195, 31-39.	3.3	12
61	Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms. Environmental Science and Pollution Research, 2016, 23, 24277-24288.	5. 3	19
62	Impact of chemical composition of ecotoxicological test media on the stability and aggregation status of silver nanoparticles. Environmental Science: Nano, 2016, 3, 418-433.	4.3	46
63	Diurnal Variations of Air-Soil Exchange of Semivolatile Organic Compounds (PAHs, PCBs, OCPs, and) Tj ETQq1 1 ().784314 10.0	rgBT /Overlo 85
64	Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Science of the Total Environment, 2016, 550, 690-705.	8.0	977
65	Effect of plastic mulching on mycotoxin occurrence and mycobiome abundance in soil samples from asparagus crops. Mycotoxin Research, 2015, 31, 191-201.	2.3	41
66	Preface to the special section "Biohydrology ―Water for life― Ecohydrology, 2015, 8, 353-354.	2.4	0
67	The seasonal influence of olive mill wastewater applications on an orchard soil under semi-arid conditions. Journal of Plant Nutrition and Soil Science, 2015, 178, 641-648.	1.9	24
68	Effects of Olive Mill Wastewater on Soil Microarthropods and Soil Chemistry in Two Different Cultivation Scenarios in Israel and Palestinian Territories. Agriculture (Switzerland), 2015, 5, 857-878.	3.1	20
69	Enzymatic Transformation and Bonding of Sulfonamide Antibiotics to Model Humic Substances. Journal of Chemistry, 2015, 2015, 1-11.	1.9	5
70	Transport of citrate-coated silver nanoparticles in unsaturated sand. Science of the Total Environment, 2015, 535, 113-121.	8.0	35
71	Characterization of wet aggregate stability of soils by Hâ€NMR relaxometry. Magnetic Resonance in Chemistry, 2015, 53, 694-703.	1.9	29
72	Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): an incubation study. Plant and Soil, 2015, 386, 99-112.	3.7	43

#	Article	IF	CITATIONS
73	Stabilisation of precipitates of pedogenic dissolved organic matter by multivalent cations. Journal of Soils and Sediments, 2015, 15, 1-12.	3.0	66
74	The fate of silver nanoparticles in soil solution â€" Sorption of solutes and aggregation. Science of the Total Environment, 2015, 535, 54-60.	8.0	139
75	Disaggregation of silver nanoparticle homoaggregates in a river water matrix. Science of the Total Environment, 2015, 535, 35-44.	8.0	66
76	Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Science of the Total Environment, 2015, 538, 246-261.	8.0	88
77	Engineered nanoparticles in soils and waters. Science of the Total Environment, 2015, 535, 1-2.	8.0	17
78	Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. Science of the Total Environment, 2015, 535, 3-19.	8.0	160
79	Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna. Ecotoxicology and Environmental Safety, 2015, 111, 263-270.	6.0	76
80	Development of a Partial Least Squares–Based Integrated Addition Model for Predicting Mixture Toxicity. Human and Ecological Risk Assessment (HERA), 2014, 20, 174-200.	3.4	11
81	Character of transitions causing the physicochemical aging of a sapric histosol. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1169-1182.	3.6	15
82	Effect of multivalent cations, temperature, and aging on SOM thermal properties. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1203-1213.	3.6	9
83	Effect of Heating Time and Temperature on the Chemical Characteristics of Biochar from Poultry Manure. Journal of Agricultural and Food Chemistry, 2014, 62, 1912-1918.	5.2	106
84	Cation treatment and drying-temperature effects on nonylphenol and phenanthrene sorption to a sandy soil. Journal of Plant Nutrition and Soil Science, 2014, 177, 141-149.	1.9	9
85	Proton transfer processes in polar regions of humic substances initiated by aqueous aluminum cation bridges: A computational study. Geoderma, 2014, 213, 115-123.	5.1	12
86	Evaluation of hydrodynamic chromatography coupled with inductively coupled plasma mass spectrometry detector for analysis of colloids in environmental media – effects of colloid composition, coating and shape. Analytical Methods, 2014, 6, 8722-8728.	2.7	29
87	Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review. Environmental Science & Env	10.0	591
88	Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties. Environmental Chemistry, 2014, 11, 709.	1.5	15
89	Molecular Models of Cation and Water Molecule Bridges in Humic Substances. , 2014, , 107-115.		4
90	Evaluation of Hydrodynamic Chromatography Coupled with UV-Visible, Fluorescence and Inductively Coupled Plasma Mass Spectrometry Detectors for Sizing and Quantifying Colloids in Environmental Media. PLoS ONE, 2014, 9, e90559.	2.5	47

#	Article	IF	Citations
91	Reliable predictive computational toxicology methods for mixture toxicity: toward the development of innovative integrated models for environmental risk assessment. Reviews in Environmental Science and Biotechnology, 2013, 12, 235-256.	8.1	37
92	Interactions between cations and water molecule bridges in soil organic matter. Journal of Soils and Sediments, 2013, 13, 1579-1588.	3.0	17
93	Hydrodynamic Chromatography Coupled with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Investigating Nanoparticles Agglomerates. Analytical Chemistry, 2013, 85, 10643-10647.	6.5	44
94	Development of QSAR-based two-stage prediction model for estimating mixture toxicity. SAR and QSAR in Environmental Research, 2013, 24, 841-861.	2.2	10
95	Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431, 150-160.	4.7	42
96	Sorption of Silver Nanoparticles to Environmental and Model Surfaces. Environmental Science & Emp; Technology, 2013, 47, 5083-5091.	10.0	42
97	A Case Study and a Computational Simulation of the European Union Draft Technical Guidance Documents for Chemical Safety Assessment of Mixtures: Limitations and a Tentative Alternative. Journal of Occupational and Environmental Hygiene, 2013, 10, 181-193.	1.0	1
98	Combined proton NMR wideline and NMR relaxometry to study SOM-water interactions of cation-treated soils. Journal of Hydrology and Hydromechanics, 2013, 61, 50-63.	2.0	34
99	Restructuring of a Peat in Interaction with Multivalent Cations: Effect of Cation Type and Aging Time. PLoS ONE, 2013, 8, e65359.	2.5	24
100	Hydration of humic and fulvic acids studied by DSC. Journal of Thermal Analysis and Calorimetry, 2012, 110, 451-459.	3.6	20
101	Short-term evolution of hydration effects on soil organic matter properties and resulting implications for sorption of naphthalene-2-ol. Journal of Soils and Sediments, 2012, 12, 1269-1279.	3.0	14
102	Coevolution of organic substances and soils: links between soil forming processes and the stabilisation of organic substances. Journal of Soils and Sediments, 2012, 12, 1209-1210.	3.0	2
103	Preparation and characterization of humic acid cross-linked with organic bridging groups. Organic Geochemistry, 2012, 47, 132-138.	1.8	13
104	Cation-mediated cross-linking in natural organic matter: a review. Reviews in Environmental Science and Biotechnology, 2012, 11, 41-54.	8.1	94
105	Development of antibody-labelled superparamagnetic nanoparticles for the visualisation of benzo[a]pyrene in porous media with magnetic resonance imaging. Analytical and Bioanalytical Chemistry, 2012, 403, 2529-2540.	3.7	7
106	Titanium dioxide nanoparticles detoxify pirimicarb under UV irradiation at ambient intensities. Environmental Toxicology and Chemistry, 2012, 31, 518-523.	4.3	27
107	Potential of AFM–nanothermal analysis to study the microscale thermal characteristics in soils and natural organic matter (NOM). Journal of Soils and Sediments, 2012, 12, 48-62.	3.0	10
108	A robust, particle size independent, method for quantifying metal(loid oxide) nanoparticles and their agglomerates in complex environmental matrices by electrothermal vaporisation coupled to ICP-MS. Journal of Analytical Atomic Spectrometry, 2011, 26, 450-455.	3.0	15

#	Article	IF	CITATIONS
109	Translocation of Sb and Ti in an undisturbed floodplain soil after application of Sb2O3 and TiO2 nanoparticles to the surface. Journal of Environmental Monitoring, 2011, 13, 1204.	2.1	17
110	Molecular Dynamics Simulations of Water Molecule-Bridges in Polar Domains of Humic Acids. Environmental Science & Environmenta	10.0	54
111	Study of solvent effect on the stability of water bridge-linked carboxyl groups in humic acid models. Geoderma, 2011, 169, 20-26.	5.1	26
112	Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples. Organic Geochemistry, 2011, 42, 917-925.	1.8	26
113	Biological Surface Coating and Molting Inhibition as Mechanisms of TiO2 Nanoparticle Toxicity in Daphnia magna. PLoS ONE, 2011, 6, e20112.	2.5	169
114	The functionality of cation bridges for binding polar groups in soil aggregates. International Journal of Quantum Chemistry, 2011, 111, 1531-1542.	2.0	46
115	Proton Nuclear Magnetic Resonance (NMR) Relaxometry in Soil Science. Encyclopedia of Earth Sciences Series, 2011, , 667-667.	0.1	2
116	Comparative Study of Risk Assessment Approaches Based on Different Methods for Deriving DNEL and PNEC of Chemical Mixtures. Springer Proceedings in Physics, 2010, , 191-202.	0.2	1
117	Proton Nuclear Magnetic Resonance (NMR) Relaxometry in Soil Science Applications~!2009-05-04~!2010-01-25~!2010-06-18~!. The Open Magnetic Resonance Journal, 2010, 3, 15-26.	0.5	15
118	Proton NMR Relaxometry as a Useful Tool to Evaluate Swelling Processes in Peat Soils~!2009-07-26~!2009-12-04~!2010-06-15~!. The Open Magnetic Resonance Journal, 2010, 3, 27-45.	0.5	39
119	Influence of drying conditions on wettability and DRIFT spectroscopic C–H band of soil samples. European Journal of Soil Science, 2009, 60, 557-566.	3.9	26
120	Evaluation of ¹ H NMR relaxometry for the assessment of poreâ€size distribution in soil samples. European Journal of Soil Science, 2009, 60, 1052-1064.	3.9	118
121	Foreword to the thematic issue on Biohydrology. Biologia (Poland), 2009, 64, 415-418.	1.5	2
122	Stabilizing Capacity of Water Bridges in Nanopore Segments of Humic Substances: A Theoretical Investigation. Journal of Physical Chemistry C, 2009, 113, 16468-16475.	3.1	47
123	Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100kyr), Hawaiian Islands. Geochimica Et Cosmochimica Acta, 2009, 73, 2034-2060.	3.9	205
124	Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 2008, 10, 6039.	2.8	297
125	Do water molecules bridge soil organic matter molecule segments?. European Journal of Soil Science, 2008, 59, 423-429.	3.9	67
126	Effects of Soil Solution's Constituents on Proton NMR Relaxometry of Soil Samples. Soil Science Society of America Journal, 2008, 72, 1694-1707.	2.2	28

#	Article	IF	Citations
127	Influence of the sample history and the moisture status on the thermal behavior of soil organic matter. Geochimica Et Cosmochimica Acta, 2007, 71, 691-702.	3.9	21
128	Hydration Kinetics of Wettable and Water-Repellent Soils. Soil Science Society of America Journal, 2007, 71, 280-288.	2.2	21
129	The nature of wetting on urban soil samples: wetting kinetics and evaporation assessed from sessile drop shape. Hydrological Processes, 2007, 21, 2255-2265.	2.6	38
130	Influence of biofilms on the water repellency of urban soil samples. Hydrological Processes, 2007, 21, 2276-2284.	2.6	77
131	Development of soil water repellency in the course of isothermal drying and upon pH changes in two urban soils. Hydrological Processes, 2007, 21, 2266-2275.	2.6	50
132	Soil organic matter beyond molecular structure Part I: Macromolecular and supramolecular characteristics. Journal of Plant Nutrition and Soil Science, 2006, 169, 145-156.	1.9	113
133	Restructuring of polygalacturonate on alumina upon hydration—Effect on phosphate sorption kinetics. Geochimica Et Cosmochimica Acta, 2006, 70, 2957-2969.	3.9	4
134	Properties of soil organic matter and aqueous extracts of actually water repellent and wettable soil samples. Geoderma, 2006, 132, 222-239.	5.1	74
135	Soil organic matter beyond molecular structure Part II: Amorphous nature and physical aging. Journal of Plant Nutrition and Soil Science, 2006, 169, 157-167.	1.9	56
136	1H NMR Relaxometry in Natural Humous Soil Samples: Insights in Microbial Effects on Relaxation Time Distributions. Plant and Soil, 2006, 280, 209-222.	3.7	47
137	Thermomechanical analysis of air-dried whole soil samples. Thermochimica Acta, 2005, 436, 83-89.	2.7	19
138	Matrix relaxation and change of water state during hydration of peat. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 163-170.	4.7	41
139	H-NMR Relaxometry to Monitor Wetting and Swelling Kinetics in High-organic Matter Soils. Plant and Soil, 2005, 275, 1-20.	3.7	65
140	Glass Transitions in Peat:Â Their Relevance and the Impact of Water. Environmental Science & Emp; Technology, 2005, 39, 800-806.	10.0	77
141	Is Glassiness a Common Characteristic of Soil Organic Matter?. Environmental Science & Emp; Technology, 2005, 39, 9534-9540.	10.0	35
142	Kinetics of the release of dissolved organic matter (DOM) from air-dried and pre-moistened soil material. Journal of Plant Nutrition and Soil Science, 2000, 163, 1-5.	1.9	24
143	Thermal characteristics of soil organic matter measured by DSC: A hint on a glass transition. Journal of Plant Nutrition and Soil Science, 2000, 163, 179-181.	1.9	38
144	Effect of CaCl2 on the kinetics of dissolved organic matter release from a sandy soil?. Journal of Plant Nutrition and Soil Science, 2000, 163, 523-529.	1.9	20