Dipankar Dwivedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8037191/publications.pdf

Version: 2024-02-01

448610 445137 1,207 47 19 33 citations g-index h-index papers 52 52 52 1889 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	IMPUTATION OF CONTIGUOUS GAPS AND EXTREMES OF SUBHOURLY GROUNDWATER TIME SERIES USING RANDOM FORESTS. Journal of Machine Learning for Modeling and Computing, 2022, 3, 1-22.	0.9	12
2	Challenging problems of quality assurance and quality control (QA/QC) of meteorological time series data. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1049-1062.	1.9	10
3	Production of hydrogen peroxide in an intra-meander hyporheic zone at East River, Colorado. Scientific Reports, 2022, 12, 712.	1.6	3
4	Guidelines for Publicly Archiving Terrestrial Model Data to Enhance Usability, Intercomparison, and Synthesis. Data Science Journal, 2022, 21, 3.	0.6	3
5	Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. Earth and Space Science, 2022, 9, .	1.1	14
6	From legacy contamination to watershed systems science: a review of scientific insights and technologies developed through DOE-supported research in water and energy security. Environmental Research Letters, 2022, 17, 043004.	2.2	12
7	Volcanology, Geochemistry, and Petrology Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. Earth and Space Science, 2022, 9, .	1.1	2
8	The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses. Hydrology and Earth System Sciences, 2022, 26, 2245-2276.	1.9	11
9	Hot Spots and Hot Moments in the Critical Zone: Identification of and Incorporation into Reactive Transport Models., 2022,, 9-47.		7
10	Sulfur Biogeochemical Cycling and Redox Dynamics in a Shaleâ€Dominated Mountainous Watershed. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
11	Integrating field observations and process-based modeling to predict watershed water quality under environmental perturbations. Journal of Hydrology, 2021, 602, 125762.	2.3	22
12	Modeling the Impact of Riparian Hollows on River Corridor Nitrogen Exports. Frontiers in Water, 2021, 3, .	1.0	15
13	Hyperbolic Reformulation Approach to Enable Efficient Simulation of Groundwater Flow and Reactive Transport. Environmental Engineering Science, 2021, 38, 181-191.	0.8	1
14	Temporal Variability of Water Quality Parameters at the Elkhorn Slough Estuary using Wavelets. , 2021, , .		1
15	Hysteresis Patterns of Watershed Nitrogen Retention and Loss Over the Past 50Âyears in United States Hydrological Basins. Global Biogeochemical Cycles, 2021, 35, e2020GB006777.	1.9	29
16	Meanders as a scaling motif for understanding of floodplain soil microbiome and biogeochemical potential at the watershed scale. Microbiome, 2021, 9, 121.	4.9	11
17	Editorial: Linking Hydrological and Biogeochemical Processes in Riparian Corridors. Frontiers in Water, 2021, 3, .	1.0	3
18	A machine learning approach for packet loss prediction in science flows. Future Generation Computer Systems, 2020, 102, 190-197.	4.9	10

#	Article	IF	Citations
19	Analysis of curtailment at The Geysers geothermal Field, California. Geothermics, 2020, 87, 101871.	1.5	10
20	Sequential Imputation of Missing Spatio-Temporal Precipitation Data Using Random Forests. Frontiers in Water, 2020, 2, .	1.0	24
21	Wavelet-based local mesh refinement for rainfall–runoff simulations. Journal of Hydroinformatics, 2020, 22, 1059-1077.	1.1	14
22	Differential C-Q Analysis: A New Approach to Inferring Lateral Transport and Hydrologic Transients Within Multiple Reaches of a Mountainous Headwater Catchment. Frontiers in Water, 2020, 2, .	1.0	24
23	Emerging technologies and radical collaboration to advance predictive understanding of watershed hydrobiogeochemistry. Hydrological Processes, 2020, 34, 3175-3182.	1.1	24
24	Influence of Streambed Heterogeneity on Hyporheic Flow and Sorptive Solute Transport. Water (Switzerland), 2020, 12, 1547.	1.2	18
25	Geochemical Controls on Release and Speciation of Fe(II) and Mn(II) From Hyporheic Sediments of East River, Colorado. Frontiers in Water, 2020, 2 , .	1.0	7
26	Detecting control system misbehavior by fingerprinting programmable logic controller functionality. International Journal of Critical Infrastructure Protection, 2019, 26, 100306.	2.9	8
27	Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists. Reviews in Mineralogy and Geochemistry, 2019, 85, 329-348.	2.2	42
28	Understanding and Predicting Vadose Zone Processes. Reviews in Mineralogy and Geochemistry, 2019, 85, 303-328.	2.2	31
29	Challenges in Building an End-to-End System for Acquisition, Management, and Integration of Diverse Data From Sensor Networks in Watersheds: Lessons From a Mountainous Community Observatory in East River, Colorado. IEEE Access, 2019, 7, 182796-182813.	2.6	18
30	11. Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists. , 2019, , 329-348.		0
31	10. Understanding and Predicting Vadose Zone Processes. , 2019, , 303-328.		3
32	Evaluating temporal controls on greenhouse gas (GHG) fluxes in an Arctic tundra environment: An entropy-based approach. Science of the Total Environment, 2019, 649, 284-299.	3.9	23
33	Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. Water Resources Research, 2018, 54, 205-222.	1.7	99
34	The East River, Colorado, Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multiscale Hydrological–Biogeochemical Dynamics. Vadose Zone Journal, 2018, 17, 1-25.	1.3	115
35	Geochemical Exports to River From the Intrameander Hyporheic Zone Under Transient Hydrologic Conditions: East River Mountainous Watershed, Colorado. Water Resources Research, 2018, 54, 8456-8477.	1.7	66
36	Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biology and Biochemistry, 2017, 107, 244-259.	4.2	64

#	Article	IF	Citations
37	Impact of Intra-meander Hyporheic Flow on Nitrogen Cycling. Procedia Earth and Planetary Science, 2017, 17, 404-407.	0.6	26
38	On Modeling CO2 Dynamics in a Flood Plain Aquifer. Procedia Earth and Planetary Science, 2017, 17, 408-411.	0.6	3
39	Hot Spots and Persistence of Nitrate in Aquifers Across Scales. Entropy, 2016, 18, 25.	1.1	21
40	Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environmental Modelling and Software, 2016, 85, 27-41.	1.9	35
41	Impact of the Linked Surface Water-Soil Water-Groundwater System on Transport of E. coli in the Subsurface. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	25
42	Benchmarking Reactive Transport Codes for Subsurface Environmental Problems. , 2016, , 299-316.		2
43	Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geoscientific Model Development, 2014, 7, 1335-1355.	1.3	97
44	Estimating <i>Escherichia coli</i> loads in streams based on various physical, chemical, and biological factors. Water Resources Research, 2013, 49, 2896-2906.	1.7	24
45	Prenatal Nitrate Intake from Drinking Water and Selected Birth Defects in Offspring of Participants in the National Birth Defects Prevention Study. Environmental Health Perspectives, 2013, 121, 1083-1089.	2.8	112
46	Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: A comparative study. Atmospheric Environment, 2006, 40, 5586-5595.	1.9	91
47	Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction., 2005,,.		2