Sankara Sarma V Tatiparti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8037163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Instantaneous-Progressive nucleation and growth of palladium during electrodeposition. Results in Surfaces and Interfaces, 2022, 6, 100044.	1.0	8
2	Stoichiometry–grain size-specific capacitance interrelationships in nickel oxide. RSC Advances, 2022, 12, 8333-8344.	1.7	5
3	Boron from net charge acceptor to donor and its effect on hydrogen uptake by novel Mg-B-electrochemically synthesized reduced graphene oxide. Scientific Reports, 2021, 11, 10995.	1.6	10
4	Strategies for scaling-up LaNi5-based hydrogen storage system with internal conical fins and cooling tubes. International Journal of Hydrogen Energy, 2021, 46, 19031-19045.	3.8	15
5	Synergetic effect of C and Ni on hydrogen release from Mg–Ni-electrochemically synthesized reduced graphene oxide based hydride. Sustainable Energy and Fuels, 2021, 5, 4414-4424.	2.5	7
6	Nano-structured palladium impregnate graphitic carbon nitride composite for efficient hydrogen gasÂsensing. International Journal of Hydrogen Energy, 2020, 45, 10623-10636.	3.8	36
7	Electrochemical Behavior of Cobalt Oxide/Boron-Incorporated Reduced Graphene Oxide Nanocomposite Electrode for Supercapacitor Applications. Journal of Materials Engineering and Performance, 2020, 29, 6535-6549.	1.2	14
8	Modeling and numerical simulation of a 5Âkg LaNi5-based hydrogen storage reactor with internal conical fins. International Journal of Hydrogen Energy, 2020, 45, 8794-8809.	3.8	66
9	Electrode and symmetric supercapacitor device performance of boronâ€incorporated reduced graphene oxide synthesized by electrochemical exfoliation. Energy Storage, 2020, 2, e134.	2.3	21
10	Selective Removal of Photocatalytically Active Anatase TiO ₂ Phase from Mixedâ€Phase TiO ₂ â€ZnO Nanocomposites: Impact on Physicochemical Properties and Photocatalytic Activity. Energy and Environmental Materials, 2020, 3, 548-559.	7.3	11
11	Influence of surface condition on the current densities rendering nucleation loop during cyclic voltammetry for electrodeposition of Pd thin films. Surfaces and Interfaces, 2020, 20, 100525.	1.5	2
12	On the Nucleation Loop in Cyclic Voltammetry for Electrodeposition of Pd Thin Films. ECS Meeting Abstracts, 2020, MA2020-01, 1189-1189.	0.0	0
13	Effect of Mg shell on MgH2 dehydrogenation by morphological and mathematical analysis. Nanomaterials and Energy, 2019, 8, 186-195.	0.1	0
14	Synthesis, structural and morphological property of a novel Pd/g-CN nano composite for gas sensing application. IOP Conference Series: Materials Science and Engineering, 2019, 499, 012003.	0.3	1
15	Synthesis, characterization and photocatalytic activity evaluation of TiO2 – ZnO nanocomposites: Elucidating effect of varying Ti:Zn molar ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 47-58.	2.3	34
16	On the parameters of Johnson-Mehl-Avrami-Kolmogorov equation for the hydride growth mechanisms: A case of MgH2. Journal of Alloys and Compounds, 2018, 742, 1002-1005.	2.8	5
17	Effect of calcination temperature on the microstructure and electronic properties of TiO2–ZnO nanocomposites and implications on photocatalytic activity. Applied Nanoscience (Switzerland), 2018, 8, 915-930.	1.6	8
18	Hydrogen Sorption Mechanism of Magnesium (Hydride). Materials Today: Proceedings, 2018, 5, 23235-23241.	0.9	8

#	Article	IF	CITATIONS
19	Mg–C Interaction Induced Hydrogen Uptake and Enhanced Hydrogen Release Kinetics in MgH ₂ -rGO Nanocomposites. Journal of Physical Chemistry C, 2018, 122, 22389-22396.	1.5	40
20	The dehydrogenation mechanism during the incubation period in nanocrystalline MgH ₂ . Physical Chemistry Chemical Physics, 2017, 19, 6677-6687.	1.3	14
21	Nanostructure stabilization in electrodeposited Al–Mg dendrites. Journal of Alloys and Compounds, 2017, 694, 632-635.	2.8	4
22	Anomalous Al–Mg Electrodeposition Using an Organometallic-Based Electrolyte. Journal of the Electrochemical Society, 2016, 163, D722-D727.	1.3	2
23	Transition from interfacial to diffusional growth during hydrogenation of Mg. Materials Letters, 2015, 161, 271-274.	1.3	10
24	Contributions of multiple phenomena towards hydrogenation: A case of Mg. International Journal of Hydrogen Energy, 2015, 40, 13518-13529.	3.8	13
25	Tension–compression asymmetry in an extruded Mg alloy AM30: Temperature and strain rate effects. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 572, 8-18.	2.6	49
26	Annealing response of AA5182 deformed in plane strain and equibiaxial strain paths. Philosophical Magazine, 2013, 93, 2613-2629.	0.7	11
27	Potentiostatic versus galvanostatic electrodeposition of nanocrystalline Al–Mg alloy powders. Journal of Solid State Electrochemistry, 2012, 16, 1255-1262.	1.2	15
28	Evolution of Morphology and Microstructure in Electrodeposited Nanocrystalline Al–Mg Alloy Dendrites. Metals, 2011, 1, 3-15.	1.0	5
29	Substrate effect on electrodeposited nanocrystalline Al–Mg alloy powders. Materials Letters, 2011, 65, 1859-1861.	1.3	5
30	Preferred orientation and shape of electrodeposited nanocrystalline Al–Mg alloy dendrites. Materials Letters, 2011, 65, 1915-1918.	1.3	6
31	Internal structure of the electrodeposited nanocrystalline Al–Mg alloy dendrites. Materials Letters, 2011, 65, 2413-2415.	1.3	6
32	Extended solubility in the electrodeposited nanocrystalline Al–Mg alloy dendrites. Materials Letters, 2011, 65, 3173-3175.	1.3	4
33	Banded structure of the electrodeposited nanocrystalline Al–Mg alloy dendrites. Materials Letters, 2011, 65, 3262-3264.	1.3	4
34	An understanding of the electrodeposition process of Al–Mg alloys using an organometallic-based electrolyte. Journal of Applied Electrochemistry, 2010, 40, 2091-2098.	1.5	11
35	The Formation of Morphologies and Microstructures in Electrodeposited Nanocrystalline Al–Mg Alloy Powders. Journal of the Electrochemical Society, 2010, 157, E167.	1.3	14
36	Electrodeposition of Al–Mg Alloy Powders. Journal of the Electrochemical Society, 2008, 155, D363.	1.3	27