
Yao-Qiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036953/publications.pdf

Version: 2024-02-01

YAO-OLANG CHEN

#	Article	IF	CITATIONS
1	Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2014, 240, 62-73.	12.7	115
2	Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia. Journal of Molecular Catalysis A, 2015, 398, 304-311.	4.8	67
3	A study on H 2 -TPR of Pt/Ce 0.27 Zr 0.73 O 2 and Pt/Ce 0.27 Zr 0.70 La 0.03 O x for soot oxidation. Applied Surface Science, 2016, 377, 48-55.	6.1	59
4	New insights into the role of Pd-Ce interface for methane activation on monolithic supported Pd catalysts: A step forward the development of novel PGM Three-Way Catalysts for natural gas fueled engines. Applied Catalysis B: Environmental, 2020, 264, 118475.	20.2	59
5	New insights into the structure of a CeO ₂ –ZrO ₂ –Al ₂ O ₃ composite and its influence on the performance of the supported Pd-only three-way catalyst. Catalysis Science and Technology, 2015, 5. 4488-4500.	4.1	51
6	Design and Synthesis of Highly-Dispersed WO ₃ Catalyst with Highly Effective NH ₃ –SCR Activity for NO _{<i>x</i>} Abatement. ACS Catalysis, 2019, 9, 11557-11562.	11.2	50
7	The promotional effect of Ce on CuFe/beta monolith catalyst for selective catalytic reduction of NO x by ammonia. Chemical Engineering Journal, 2016, 302, 697-706.	12.7	48
8	Size-dependent CO and propylene oxidation activities of platinum nanoparticles on the monolithic Pt/TiO ₂ –YO _x diesel oxidation catalyst under simulative diesel exhaust conditions. Catalysis Science and Technology, 2015, 5, 2358-2365.	4.1	45
9	Effectively promote catalytic performance by adjusting W/Fe molar ratio of FeWx/Ce0.68Zr0.32O2 monolithic catalyst for NH3-SCR. Journal of Industrial and Engineering Chemistry, 2016, 36, 334-345.	5.8	45
10	Enhancement of activity and hydrothermal stability of Pd/ZrO 2 -Al 2 O 3 doped by Mg for methane combustion under lean conditions. Fuel, 2017, 194, 368-374.	6.4	40
11	Promotional effects of Titanium additive on the surface properties, active sites and catalytic activity of W/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3. Applied Surface Science, 2017, 419, 697-707.	6.1	32
12	The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites. Journal of Alloys and Compounds, 2015, 628, 213-221.	5.5	30
13	Yâ€ s haped poly(ethylene glycol) and poly(trimethylene carbonate) amphiphilic copolymer: Synthesis and for drug delivery. Journal of Polymer Science Part A, 2008, 46, 8131-8140.	2.3	27
14	Effect of the calcination temperature of cerium–zirconium mixed oxides on the structure and catalytic performance of WO ₃ /CeZrO ₂ monolithic catalyst for selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 24177-24187.	3.6	26
15	Enhanced catalytic performance of a PdO catalyst prepared via a two-step method of in situ reduction–oxidation. Chemical Communications, 2017, 53, 6160-6163.	4.1	22
16	Novel Cu-Based CHA/AFI Hybrid Crystal Structure Catalysts Synthesized for NH ₃ -SCR. Industrial & Engineering Chemistry Research, 2019, 58, 18046-18054.	3.7	22
17	Grain size effect on the high-temperature hydrothermal stability of Cu/SAPO-34 catalysts for NH3-SCR. Journal of Environmental Chemical Engineering, 2020, 8, 104559.	6.7	20
18	Solvent Effects on the Low-Temperature NH ₃ –SCR Activity and Hydrothermal Stability of WO ₃ /SiO ₂ @CeZrO _{<i>x</i>} Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 13418-13429.	6.7	20

YAO-QIANG CHEN

#	Article	IF	CITATIONS
19	P promotion on the performance of Pd-based catalyst for emission control of natural gas driven vehicles. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 323-331.	5.3	19
20	Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and high-reaction regions: establishing roles of different reaction sites. Rare Metals, 2022, 41, 1899-1910.	7.1	18
21	Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst. Applied Surface Science, 2017, 426, 745-754.	6.1	16
22	Degradation of benzene on Zr-doped TiO2 photocatalysts with a bimodal pore size distribution. Rare Metals, 2014, 33, 714-722.	7.1	15
23	Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH ₃ -SCR. Dalton Transactions, 2018, 47, 15038-15048.	3.3	15
24	Synthesis of a High-Stability Nanosized Pt-Loaded MgAl ₂ O ₄ Catalyst for <i>n</i> -Decane Cracking with Enhanced Activity and Durability. Industrial & Engineering Chemistry Research, 2020, 59, 4338-4347.	3.7	15
25	Evolution of Pd Species for the Conversion of Methane under Operation Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 6255-6265.	3.7	14
26	Enhanced activity and hydrothermal stability of Rh-based three-way catalyst for emission control from motorcycles with the assistance of monoethanolamine. Journal of Industrial and Engineering Chemistry, 2019, 71, 127-136.	5.8	14
27	Promotional effects of ascorbic acid on the low-temperature catalytic activity of selective catalytic oxidation of ammonia over Pt/SA: effect of Pt ⁰ content. New Journal of Chemistry, 2020, 44, 4108-4113.	2.8	14
28	Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH ₃ -SCR. Catalysis Science and Technology, 2021, 11, 7640-7651.	4.1	13
29	Three-Way Catalyst Meeting Euro III Emission Standards for Motorcycles. Chinese Journal of Catalysis, 2008, 29, 677-679.	14.0	12
30	The influence of molar ratios of Ce/Zr on the selective catalytic reduction of NO x with NH3 over Fe2O3-WO3/Ce x Zr1â^'x O2 (0Ââ‰ÂxÂâ‰Â1) monolith catalyst. Science Bulletin, 2014, 59, 3956-3965.	1.7	11
31	Significant differences of NH ₃ -SCR performances between monoclinic and hexagonal WO ₃ on Ce-based catalysts. Environmental Science: Nano, 2021, 8, 2988-3000.	4.3	11
32	Promotional effect of niobium substitution on the low-temperature activity of a WO ₃ /CeZrO _x monolithic catalyst for the selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 47570-47582.	3.6	10
33	Spotlight on Cu/SAPO-34 with high hydrothermal stability induced by a small amount of SSZ-39. Chemical Engineering Journal, 2022, 446, 137283.	12.7	10
34	A new monolithic Pt-Pd-Rh motorcycle exhaust catalyst to meet future emission standards. Chinese Journal of Catalysis, 2014, 35, 1482-1491.	14.0	8
35	Enhanced performance of a Pt-based three-way catalyst using a double-solvent method. RSC Advances, 2016, 6, 40366-40370.	3.6	8
36	Improved low-temperature catalytic oxidation performance of Pt-based catalysts by modulating the electronic and size effects. New Journal of Chemistry, 2020, 44, 10500-10506.	2.8	7

YAO-QIANG CHEN

#	Article	IF	CITATIONS
37	Low-temperature performance controlled by hydroxyl value in polyethylene glycol enveloping Pt-based catalyst for CO/C3H6/NO oxidation. Molecular Catalysis, 2020, 484, 110740.	2.0	6
38	Pd-based Catalysts by Colloid Synthesis Using Different Reducing Reagents for Complete Oxidation of Methane. Catalysis Letters, 2019, 149, 2098-2103.	2.6	4
39	Fabricate surface structure-stabilized Cu/BEA with hydrothermal-resistant via si-deposition for NOx abatement. Molecular Catalysis, 2020, 495, 111153.	2.0	4
40	Dispersion improvement and activity promotion of Pt catalysts supported on a Ce-based support by pH adjustment. New Journal of Chemistry, 2018, 42, 15639-15647.	2.8	1