
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036903/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 2016, 197, 658-663.                                                                                                                                     | 4.2 | 154       |
| 2  | A fast, reliable, ultra high performance liquid chromatography method for the simultaneous<br>determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl<br>ethoxymethylenemalonate as a derivatising agent. Food Chemistry, 2013, 139, 1029-1035. | 4.2 | 126       |
| 3  | The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Scientific Reports, 2019, 9, 120.                                                                                                                         | 1.6 | 126       |
| 4  | The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 2017, 218, 249-255.                                                                                                                            | 4.2 | 115       |
| 5  | A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chemistry, 2017, 217, 117-124.                                                                                                                                      | 4.2 | 61        |
| 6  | Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to<br>different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus.<br>General and Comparative Endocrinology, 2009, 162, 293-300.               | 0.8 | 59        |
| 7  | Equol status and changes in fecal microbiota in menopausal women receiving long-term treatment for menopause symptoms with a soy-isoflavone concentrate. Frontiers in Microbiology, 2015, 6, 777.                                                                                | 1.5 | 57        |
| 8  | A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 2016, 63, 216-223.                                                                                                                                                             | 2.8 | 55        |
| 9  | Isolation and Characterization of Piscine Osteonectin and Downregulation of Its Expression by PTH-Related Protein. Journal of Bone and Mineral Research, 2004, 20, 682-692.                                                                                                      | 3.1 | 50        |
| 10 | Genetic and functional analysis of biogenic amine production capacity among starter and non-starter<br>lactic acid bacteria isolated from artisanal cheeses. European Food Research and Technology, 2015,<br>241, 377-383.                                                       | 1.6 | 46        |
| 11 | Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria. Frontiers in Microbiology, 2015, 6, 825.                                                                                                       | 1.5 | 44        |
| 12 | The biogenic amine tryptamine, unlike $\hat{l}^2$ -phenylethylamine, shows in vitro cytotoxicity at concentrations that have been found in foods. Food Chemistry, 2020, 331, 127303.                                                                                             | 4.2 | 42        |
| 13 | Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus<br>lactis and causes the alkalinization of the culture medium. Applied Microbiology and Biotechnology,<br>2015, 99, 897-905.                                                        | 1.7 | 40        |
| 14 | Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods?. Food Chemistry, 2018, 269, 321-326.                                                                                                      | 4.2 | 40        |
| 15 | Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products.<br>Frontiers in Microbiology, 2016, 7, 591.                                                                                                                                          | 1.5 | 39        |
| 16 | Isolation and typification of histamine-producing Lactobacillus vaginalis strains from cheese.<br>International Journal of Food Microbiology, 2015, 215, 117-123.                                                                                                                | 2.1 | 38        |
| 17 | Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiology, 2016, 59, 85-91.                                                                                                                     | 2.1 | 35        |
| 18 | The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. International Journal of Food Microbiology, 2013, 165, 43-50.                                                                         | 2.1 | 30        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy<br>Products. Frontiers in Microbiology, 2016, 7, 445.                                                                             | 1.5 | 28        |
| 20 | Lactobacillus rossiae strain isolated from sourdough produces putrescine from arginine. Scientific Reports, 2018, 8, 3989.                                                                                                          | 1.6 | 27        |
| 21 | lsocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation. Current Genetics, 2004, 44, 305-316.                                                                        | 0.8 | 26        |
| 22 | Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent. Food Microbiology, 2015, 48, 163-170.                                                                       | 2.1 | 26        |
| 23 | A novel UHPLC method for the rapid and simultaneous determination of daidzein, genistein and equol<br>in human urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life<br>Sciences, 2015, 1005, 1-8. | 1.2 | 24        |
| 24 | Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia equolifaciens<br>DSM19450T. Nutrients, 2019, 11, 993.                                                                                            | 1.7 | 24        |
| 25 | An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.<br>Microbial Cell Factories, 2014, 13, 169.                                                                                       | 1.9 | 22        |
| 26 | Cellular morphology and markers of cartilage and bone in the marine teleost Sparus auratus. Cell and<br>Tissue Research, 2011, 343, 619-635.                                                                                        | 1.5 | 21        |
| 27 | Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl<br>endopeptidase. Applied Microbiology and Biotechnology, 2014, 98, 6689-6700.                                                        | 1.7 | 21        |
| 28 | Putrescine biosynthesis and export genes are essential for normal growth of avian pathogenic<br>Escherichia coli. BMC Microbiology, 2018, 18, 226.                                                                                  | 1.3 | 21        |
| 29 | Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human<br>Gastrointestinal Tract. Frontiers in Microbiology, 2019, 9, .                                                               | 1.5 | 21        |
| 30 | AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus<br>lactis, Acts in Response to the Agmatine Concentration. Applied and Environmental Microbiology, 2015,<br>81, 6145-6157.       | 1.4 | 20        |
| 31 | Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis. Microbial Cell Factories, 2015, 14, 208.                                                                           | 1.9 | 19        |
| 32 | An altered gene expression profile in tyramine-exposed intestinal cell cultures supports the genotoxicity of this biogenic amine at dietary concentrations. Scientific Reports, 2018, 8, 17038.                                     | 1.6 | 19        |
| 33 | <i>Lactobacillus parabuchneri</i> produces histamine in refrigerated cheese at a<br>temperatureâ€dependent rate. International Journal of Food Science and Technology, 2018, 53, 2342-2348.                                         | 1.3 | 19        |
| 34 | Enterococcus faecalis Bacteriophage 156 Is an Effective Biotechnological Tool for Reducing the<br>Presence of Tyramine and Putrescine in an Experimental Cheese Model. Frontiers in Microbiology, 2019,<br>10, 566.                 | 1.5 | 19        |
| 35 | Histamine production in Lactobacillus vaginalis improves cell survival at low pH by counteracting the acidification of the cytosol. International Journal of Food Microbiology, 2020, 321, 108548.                                  | 2.1 | 17        |
| 36 | GABA-Producing Lactococcus lactis Strains Isolated from Camel's Milk as Starters for the Production of GABA-Enriched Cheese. Foods, 2021, 10, 633.                                                                                  | 1.9 | 17        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Differential control of isocitrate lyase gene transcription by nonâ€ <del>f</del> ermentable carbon sources in the milk yeast <i>Kluyveromyces lactis</i> . FEBS Letters, 2008, 582, 549-557.                                                                 | 1.3 | 16        |
| 38 | Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production.<br>International Journal of Food Microbiology, 2016, 232, 1-6. | 2.1 | 16        |
| 39 | The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis. Frontiers in Microbiology, 2017, 8, 2107.                                                                                                             | 1.5 | 16        |
| 40 | Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol. International Journal of Food Microbiology, 2016, 236, 83-89.                                                         | 2.1 | 15        |
| 41 | Mastitis Modifies the Biogenic Amines Profile in Human Milk, with Significant Changes in the Presence of Histamine, Putrescine and Spermine. PLoS ONE, 2016, 11, e0162426.                                                                                    | 1.1 | 14        |
| 42 | CRTAC1 homolog proteins are conserved from cyanobacteria to man and secreted by the teleost fish pituitary gland. Gene, 2010, 456, 1-14.                                                                                                                      | 1.0 | 12        |
| 43 | Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an Adlercreutzia<br>equolifaciens Strain That Does Not Produce Equol. Biomolecules, 2020, 10, 950.                                                                                   | 1.8 | 11        |
| 44 | Identification of technological/metabolic/environmental profiles of cheeses with high GABA contents. LWT - Food Science and Technology, 2020, 130, 109603.                                                                                                    | 2.5 | 11        |
| 45 | Multiple regulatory elements control the expression of the yeastACR1gene. FEBS Letters, 1999, 445, 246-250.                                                                                                                                                   | 1.3 | 10        |
| 46 | Modulation of equol production via different dietary regimens in an artificial model of the human colon. Journal of Functional Foods, 2020, 66, 103819.                                                                                                       | 1.6 | 9         |
| 47 | Cloning and expression of a codon-optimized gene encoding the influenza A virus nucleocapsid protein in Lactobacillus casei. International Microbiology, 2013, 16, 93-101.                                                                                    | 1.1 | 8         |
| 48 | Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583. Genomics<br>Data, 2016, 9, 67-69.                                                                                                                                       | 1.3 | 7         |
| 49 | PTHrP-induced modifications of the sea bream (Sparus auratus) vertebral bone proteome. General and Comparative Endocrinology, 2013, 191, 102-112.                                                                                                             | 0.8 | 5         |
| 50 | Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88. Genome Announcements, 2013, 1, .                                                                                                                                                             | 0.8 | 5         |
| 51 | Solubilization of gliadins for use as a source of nitrogen in the selection of bacteria with gliadinase activity. Food Chemistry, 2015, 168, 439-444.                                                                                                         | 4.2 | 5         |
| 52 | Nucleotide sequence alignment of hdcA from Gram-positive bacteria. Data in Brief, 2016, 6, 674-679.                                                                                                                                                           | 0.5 | 5         |
| 53 | Polyphasic Characterisation of Non-Starter Lactic Acid Bacteria from Algerian Raw Camel's Milk and<br>Their Technological Aptitudes. Food Technology and Biotechnology, 2020, 58, 260-272.                                                                    | 0.9 | 5         |
| 54 | Screening sourdough samples for gliadin-degrading activity revealed <i>Lactobacillus casei</i> strains<br>able to individually metabolize the coeliac-disease-related 33-mer peptide. Canadian Journal of<br>Microbiology, 2016, 62, 422-430.                 | 0.8 | 4         |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.<br>Genomics Data, 2016, 7, 112-114.                                                    | 1.3 | 4         |
| 56 | Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.<br>Genomics Data, 2015, 6, 228-230.                                                     | 1.3 | 3         |
| 57 | Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data in Brief, 2016, 9, 398-400. | 0.5 | 2         |
| 58 | Construction and characterization of a double mutant of Enterococcus faecalis that does not produce biogenic amines. Scientific Reports, 2019, 9, 16881.                                | 1.6 | 2         |
| 59 | Are there profiles of cheeses with a high GABA and safe histamine content?. Food Control, 2022, 132, 108491.                                                                            | 2.8 | 2         |
| 60 | Investigating the biotechnological potential of lactic acid bacteria strains isolated from different<br>Algerian dairy and farm sources. Archives of Microbiology, 2022, 204, 220.      | 1.0 | 2         |
| 61 | Aminas biógenas en alimentos: métodos moleculares para la detección e identificación de bacterias<br>productoras. Arbor, 2020, 196, 545.                                                | 0.1 | 0         |