
Ken McAnally

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visual–haptic integration, action and embodiment in virtual reality. Psychological Research, 2022, 86, 1847-1857.	1.7	6
2	Inference in the Wild: A Framework for Human Situation Assessment and a Case Study of Air Combat. Cognitive Science, 2018, 42, 2181-2204.	1.7	6
3	Sensory integration deficits support a dimensional view of psychosis and are not limited to schizophrenia. Translational Psychiatry, 2017, 7, e1118-e1118.	4.8	33
4	Metacognitive monitoring and control in visual change detection: Implications for situation awareness and cognitive control. PLoS ONE, 2017, 12, e0176032.	2.5	3
5	Modelling Visual Change Detection and Identification under Free Viewing Conditions. PLoS ONE, 2016, 11, e0149217.	2.5	2
6	The integration of edge and region cues: the effect of a compressive nonlinearty in search tasks. Journal of Vision, 2015, 15, 325.	0.3	0
7	Spatial release from speech-on-speech masking in the median sagittal plane. Journal of the Acoustical Society of America, 2012, 131, 378-385.	1.1	17
8	Source monitoring and proneness to auditory-verbal hallucinations: A signal detection analysis. Cognitive Neuropsychiatry, 2012, 17, 544-562.	1.3	8
9	Hearing voices inside and outside the head: Spatial source monitoring in participants prone to auditory hallucinations. Cognitive Neuropsychiatry, 2012, 17, 506-526.	1.3	3
10	Memory for the locations of environmental sounds. Journal of the Acoustical Society of America, 2011, 129, 3873-3883.	1.1	7
11	A dual-process account of auditory change detection Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 994-1004.	0.9	19
12	Sound localisation during illusory self-rotation. Experimental Brain Research, 2008, 185, 337-340.	1.5	4
13	Spectral integration time of the auditory localisation system. Hearing Research, 2008, 238, 118-123.	2.0	2
14	The role of spatial location in auditory search. Hearing Research, 2008, 238, 139-146.	2.0	26
15	Localization of Sound Presented Via a Spatial Audio Display during Visually Induced Vection in Pitch, Roll, and Yaw. Aviation, Space, and Environmental Medicine, 2008, 79, 611-615.	0.5	2
16	Spatial Audio Displays Improve the Detection of Target Messages in a Continuous Monitoring Task. Human Factors, 2007, 49, 688-695.	3.5	9
17	Learning and Retention of Associations Between Auditory Icons and Denotative Referents: Implications for the Design of Auditory Warnings. Human Factors, 2006, 48, 288-299.	3.5	33
18	A test of the magnocellular deficit theory of dyslexia in an adult sample. Cognitive Neuropsychology, 2006, 23, 1215-1229.	1.1	16

KEN MCANALLY

#	Article	IF	CITATIONS
19	Directed Attention Eliminates †Change Deafness' in Complex Auditory Scenes. Current Biology, 2005, 15, 1108-1113.	3.9	93
20	Spectral Information in Sound Localization. International Review of Neurobiology, 2005, 70, 399-434.	2.0	53
21	Utility of Monaural Spectral Cues Is Enhanced in the Presence of Cues to Sound-Source Lateral Angle. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 80-89.	1.8	11
22	Effects of Supplementing Head-Down Displays With 3-D Audio During Visual Target Acquisition. The International Journal of Aviation Psychology, 2004, 14, 277-295.	0.7	10
23	Contrast sensitivity in subgroups of developmental dyslexia. Vision Research, 2003, 43, 467-477.	1.4	69
24	The overlay interference task and object-selective visual attention. Vision Research, 2003, 43, 1443-1453.	1.4	3
25	Timing of finger tapping to frequency modulated acoustic stimuli. Acta Psychologica, 2002, 109, 331-338.	1.5	18
26	Can contrast sensitivity functions in dyslexia be explained by inattention rather than a magnocellular deficit?. Vision Research, 2001, 41, 3205-3211.	1.4	98
27	Lapses of concentration and dyslexic performance on the Ternus task. Cognition, 2001, 81, B21-B31.	2.2	37
28	Localization of amplitude-modulated high-frequency noise. Journal of the Acoustical Society of America, 2000, 107, 3568-3571.	1.1	12
29	Psychophysical Sensitivity and Physiological Response to Amplitude Modulation in Adult Dyslexic Listeners. Journal of Speech, Language, and Hearing Research, 1999, 42, 797-803.	1.6	93
30	Aurally and Visually Guided Visual Search in a Virtual Environment. Human Factors, 1998, 40, 461-468.	3.5	43
31	Comparison of Current Waveforms for the Electrical Stimulation of Residual Low Frequency Hearing. Acta Oto-Laryngologica, 1997, 117, 831-835.	0.9	7
32	Variability of Amplitude and Area of the Auditory Nerve Compound Action Potential. Acta Oto-Laryngologica, 1997, 117, 836-840.	0.9	0
33	Effect of Time and Frequency Manipulation on Syllable Perception in Developmental Dyslexics. Journal of Speech, Language, and Hearing Research, 1997, 40, 912-924.	1.6	44
34	Scalp Potentials Evoked by Amplitude-Modulated Tones in Dyslexia. Journal of Speech, Language, and Hearing Research, 1997, 40, 939-945.	1.6	66
35	Acoustic and electric forward-masking of the auditory nerve compound action potential: evidence for linearity of electro-mechanical transduction. Hearing Research, 1997, 106, 137-145.	2.0	9
36	Estimating mechanical responses to pulsatile electrical stimulation of the cochlea. Hearing Research, 1997, 106, 146-153.	2.0	16

KEN MCANALLY

#	Article	IF	CITATIONS
37	Phase effects in forward masking of the compound action potential: a comparison of responses to stimulus and distortion frequencies. Hearing Research, 1995, 91, 110-118.	2.0	0
38	Stimulation of Residual Hearing in the Cat by Pulsatile Electrical Stimulation of the Cochlea. Acta Oto-Laryngologica, 1994, 114, 366-372.	0.9	21
39	Hair cell mediated responses of the auditory nerve to sinusoidal electrical stimulation of the cochlea in the cat. Hearing Research, 1993, 67, 55-68.	2.0	29
40	Comparison of Half-Band and Full-Band Electrodes for Intracochlear Electrical Stimulation. Annals of Otology, Rhinology and Laryngology, 1993, 102, 363-367.	1.1	7
41	Coherence of frequency modulation is encoded by cochlear-generated distortion. Hearing Research, 1992, 58, 213-220.	2.0	2
42	A gated differential amplifier for recording physiological responses to electrical stimulation. Journal of Neuroscience Methods, 1992, 44, 81-84.	2.5	18
43	Neural sensitivity to phase of high frequency tones. Hearing Research, 1990, 44, 51-61.	2.0	3
44	A psychophysical study of spectral hyperacuity. Hearing Research, 1990, 44, 93-96.	2.0	5
45	Spectral hyperacuity in the cat: neural response to frequency modulated tone pairs. Hearing Research, 1989, 41, 237-248.	2.0	8