Yang K Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036603/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering cellular signals in adult mouse sinoatrial node cells. IScience, 2022, 25, 103693.	1.9	4
2	Gα12 and Cα13: Versatility in Physiology and Pathology. Frontiers in Cell and Developmental Biology, 2022, 10, 809425.	1.8	6
3	Subcellular Propagation of Cardiomyocyte β-Adrenergic Activation of Calcium Uptake Involves Internal β-Receptors and AKAP7. Function, 2022, 3, .	1.1	6
4	Monoamine oxidase A and organic cation transporter 3 coordinate intracellular \hat{l}^2 1AR signaling to calibrate cardiac contractile function. Basic Research in Cardiology, 2022, 117, .	2.5	9
5	Carvedilol induces biased β1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility. Cardiovascular Research, 2021, 117, 2237-2251.	1.8	16
6	Intracellular β ₁ -Adrenergic Receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circulation Research, 2021, 128, 246-261.	2.0	38
7	Compartmentalized cAMP signaling in arterial myocytes. FASEB Journal, 2021, 35, .	0.2	0
8	Monoamine Oxidases Desensitize Intracellular β ₁ AR Signaling in Heart Failure. Circulation Research, 2021, 129, 965-967.	2.0	13
9	AKAP5 complex facilitates purinergic modulation of vascular L-type Ca2+ channel CaV1.2. Nature Communications, 2020, 11, 5303.	5.8	22
10	GRK5 Controls SAP97-Dependent Cardiotoxic β ₁ Adrenergic Receptor-CaMKII Signaling in Heart Failure. Circulation Research, 2020, 127, 796-810.	2.0	16
11	Hyperinsulinemia promotes heterologous desensitization of β ₂ adrenergic receptor in airway smooth muscle in obesity. FASEB Journal, 2020, 34, 3996-4008.	0.2	10
12	Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet–Induced Obese Mice. Diabetes, 2020, 69, 1292-1305.	0.3	121
13	Insulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling. JCI Insight, 2020, 5, .	2.3	19
14	Phosphodiesterase 5 Associates With β2 Adrenergic Receptor to Modulate Cardiac Function in Type 2 Diabetic Hearts. Journal of the American Heart Association, 2019, 8, e012273.	1.6	30
15	Whole-Cell cAMP and PKA Activity are Epiphenomena, Nanodomain Signaling Matters. Physiology, 2019, 34, 240-249.	1.6	40
16	βâ€adrenergicâ€mediated dynamic augmentation of sarcolemmal Ca _V 1.2 clustering and coâ€operativity in ventricular myocytes. Journal of Physiology, 2019, 597, 2139-2162.	1.3	38
17	Adenylyl cyclase 5–generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. Journal of Clinical Investigation, 2019, 129, 3140-3152.	3.9	35
18	A Gs-coupled purinergic receptor boosts Ca2+ influx and vascular contractility during diabetic hyperglycemia. ELife, 2019, 8, .	2.8	33

#	Article	IF	CITATIONS
19	A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes. ELife, 2019, 8, .	2.8	21
20	β-blockers augment L-type Ca2+ channel activity by targeting spatially restricted β2AR signaling in neurons. ELife, 2019, 8, .	2.8	12
21	Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Scientific Reports, 2018, 8, 3556.	1.6	15
22	Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. Journal of Medicinal Chemistry, 2018, 61, 3541-3550.	2.9	14
23	Functionally distinct and selectively phosphorylated GPCR subpopulations co-exist in a single cell. Nature Communications, 2018, 9, 1050.	5.8	28
24	Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes. Journal of General Physiology, 2018, 150, 1567-1582.	0.9	15
25	A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching. Developmental Cell, 2018, 45, 362-375.e3.	3.1	56
26	Profiling of Differential Expression of Genes in Mice Carrying Both Mutant Presenilin 1 and Amyloid Precursor Protein Transgenes with or without Knockout of I'2 Adrenergic Receptor Gene. Journal of Applied Bioinformatics & Computational Biology, 2018, 07, .	0.2	1
27	Insulin and β Adrenergic Receptor Signaling: Crosstalk in Heart. Trends in Endocrinology and Metabolism, 2017, 28, 416-427.	3.1	39
28	Cross-Talk Between Insulin Signaling and G Protein–Coupled Receptors. Journal of Cardiovascular Pharmacology, 2017, 70, 74-86.	0.8	15
29	Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced βAR/arrestin/PDE4 complexes. Cardiovascular Research, 2017, 113, 656-670.	1.8	41
30	Highâ€fat diet induces protein kinase A and Gâ€protein receptor kinase phosphorylation of β ₂ â€adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. Journal of Physiology, 2017, 595, 1973-1986.	1.3	7
31	β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson's disease. Science, 2017, 357, 891-898.	6.0	341
32	β1-adrenergic receptor O-glycosylation regulates N-terminal cleavage and signaling responses in cardiomyocytes. Scientific Reports, 2017, 7, 7890.	1.6	27
33	Inhibiting Insulin-Mediated β ₂ -Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction. Circulation, 2017, 135, 73-88.	1.6	98
34	Phosphorylation of Ca _v 1.2 on S1928 uncouples the Lâ€ŧype Ca ²⁺ channel from the l² ₂ adrenergic receptor. EMBO Journal, 2016, 35, 1330-1345.	3.5	61
35	Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circulation Research, 2016, 119, 931-943.	2.0	43
36	With or Without Langendorff. Circulation Research, 2016, 119, 888-890.	2.0	7

#	Article	IF	CITATIONS
37	Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity. PLoS ONE, 2016, 11, e0150125.	1.1	3
38	A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans. ELife, 2016, 5, .	2.8	62
39	Insulin induces IRS2-dependent and GRK2-mediated β2AR internalization to attenuate βAR signaling in cardiomyocytes. Cellular Signalling, 2015, 27, 707-715.	1.7	31
40	Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy. Cell Stem Cell, 2015, 17, 89-100.	5.2	170
41	Inhibition of type 5 phosphodiesterase counteracts β2-adrenergic signalling in beating cardiomyocytes. Cardiovascular Research, 2015, 106, 408-420.	1.8	40
42	Trafficking of β-Adrenergic Receptors. Progress in Molecular Biology and Translational Science, 2015, 132, 151-188.	0.9	17
43	Wrapped around the heart. Nature, 2014, 507, 43-44.	13.7	1
44	A Long Lasting β1 Adrenergic Receptor Stimulation of cAMP/Protein Kinase A (PKA) Signal in Cardiac Myocytes. Journal of Biological Chemistry, 2014, 289, 14771-14781.	1.6	27
45	Genetic suppression of β2-adrenergic receptors ameliorates tau pathology in a mouse model of tauopathies. Human Molecular Genetics, 2014, 23, 4024-4034.	1.4	22
46	Insulin Inhibits Cardiac Contractility by Inducing a Gi-Biased β2-Adrenergic Signaling in Hearts. Diabetes, 2014, 63, 2676-2689.	0.3	77
47	Compartmentalization of Î ² -adrenergic signals in cardiomyocytes. Trends in Cardiovascular Medicine, 2013, 23, 250-256.	2.3	23
48	Oleic Acid Stimulates Complete Oxidation of Fatty Acids through Protein Kinase A-dependent Activation of SIRT1-PGC1α Complex. Journal of Biological Chemistry, 2013, 288, 7117-7126.	1.6	159
49	Adenylyl Cyclase Anchoring by a Kinase Anchor Protein AKAP5 (AKAP79/150) Is Important for Postsynaptic β-Adrenergic Signaling. Journal of Biological Chemistry, 2013, 288, 17918-17931.	1.6	61
50	β2 Adrenergic Receptor, Protein Kinase A (PKA) and c-Jun N-terminal Kinase (JNK) Signaling Pathways Mediate Tau Pathology in Alzheimer Disease Models. Journal of Biological Chemistry, 2013, 288, 10298-10307.	1.6	81
51	SAP97 Controls the Trafficking and Resensitization of the Beta-1-Adrenergic Receptor through Its PDZ2 and I3 Domains. PLoS ONE, 2013, 8, e63379.	1.1	14
52	Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6578-6583.	3.3	67
53	Single-molecule pull-down for studying protein interactions. Nature Protocols, 2012, 7, 445-452.	5.5	172
54	Compartmentalization of β-Adrenergic Signals in Cardiomyocytes. Circulation Research, 2011, 109, 231-244.	2.0	86

#	Article	IF	CITATIONS
55	FRET-based direct detection of dynamic protein kinase A activity on the sarcoplasmic reticulum in cardiomyocytes. Biochemical and Biophysical Research Communications, 2011, 404, 581-586.	1.0	45
56	Probing cellular protein complexes using single-molecule pull-down. Nature, 2011, 473, 484-488.	13.7	375
57	β-Adrenergic Receptor, Amyloid β-Peptide, and Alzheimer's Disease. Current Topics in Membranes, 2011, 67, 205-228.	0.5	6
58	The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge. Journal of Cell Science, 2011, 124, 2153-2164.	1.2	23
59	Gα _s -Biased β ₂ -Adrenergic Receptor Signaling from Restoring Synchronous Contraction in the Failing Heart. Science Translational Medicine, 2011, 3, 100ra88.	5.8	60
60	Amyloid β Peptide-(1–42) Induces Internalization and Degradation of β2 Adrenergic Receptors in Prefrontal Cortical Neurons. Journal of Biological Chemistry, 2011, 286, 31852-31863.	1.6	72
61	Equilibrium between adenylyl cyclase and phosphodiesterase patterns adrenergic agonist doseâ€dependent spatiotemporal cAMP/PKA activities. FASEB Journal, 2011, 25, 1012.3.	0.2	0
62	Cardiomyocytes with disrupted CFTR function require CaMKII and Ca ²⁺ â€activated Cl ^{â^'} channel activity to maintain contraction rate. Journal of Physiology, 2010, 588, 2417-2429.	1.3	42
63	Arrestin Orchestrates Crosstalk Between G Protein-Coupled Receptors to Modulate the Spatiotemporal Activation of ERK MAPK. Circulation Research, 2010, 106, 79-88.	2.0	48
64	Binding of amyloid β peptide to β ₂ adrenergic receptor induces PKAâ€dependent AMPA receptor hyperactivity. FASEB Journal, 2010, 24, 3511-3521.	0.2	73
65	Equilibrium between Adenylyl Cyclase and Phosphodiesterase Patterns Adrenergic Agonist Dose-Dependent Spatiotemporal cAMP/Protein Kinase A Activities in Cardiomyocytes. Molecular Pharmacology, 2010, 78, 340-349.	1.0	32
66	Agonist Dose-dependent Phosphorylation by Protein Kinase A and G Protein-coupled Receptor Kinase Regulates β2 Adrenoceptor Coupling to Gi Proteins in Cardiomyocytes. Journal of Biological Chemistry, 2009, 284, 32279-32287.	1.6	55
67	Differential Association of Phosphodiesterase 4D Isoforms with β2-Adrenoceptor in Cardiac Myocytes. Journal of Biological Chemistry, 2009, 284, 33824-33832.	1.6	59
68	Postsynaptic α-2 Adrenergic Receptors are Critical for the Antidepressant-Like Effects of Desipramine on Behavior. Neuropsychopharmacology, 2009, 34, 1067-1077.	2.8	53
69	Dynamic Protein Kinase A Activities Induced by β-Adrenoceptors Dictate Signaling Propagation for Substrate Phosphorylation and Myocyte Contraction. Circulation Research, 2009, 104, 770-779.	2.0	50
70	Mechanochemical Delivery and Dynamic Tracking of Fluorescent Quantum Dots in the Cytoplasm and Nucleus of Living Cells. Nano Letters, 2009, 9, 2193-2198.	4.5	119
71	FRET studies on distinct cAMP/PKA signaling induced by beta adrenergic receptor subtypes. FASEB Journal, 2009, 23, 709.1.	0.2	0
72	Norepinephrine- and Epinephrine-induced Distinct β2-Adrenoceptor Signaling Is Dictated by GRK2 Phosphorylation in Cardiomyocytes. Journal of Biological Chemistry, 2008, 283, 1799-1807.	1.6	57

#	Article	IF	CITATIONS
73	Phosphodiesterase 4 and Phosphatase 2A Differentially Regulate cAMP/Protein Kinase A Signaling for Cardiac Myocyte Contraction under Stimulation of β1 Adrenergic Receptor. Molecular Pharmacology, 2008, 74, 1453-1462.	1.0	34
74	N-Ethylmaleimide-Sensitive Factor Regulates β2 Adrenoceptor Trafficking and Signaling in Cardiomyocytes. Molecular Pharmacology, 2007, 72, 429-439.	1.0	18
75	Organization of \hat{l}^2 -adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. Journal of Cell Biology, 2007, 176, 521-533.	2.3	93
76	Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. EMBO Journal, 2007, 26, 53-64.	3.5	103
77	Norepinephrine and epinephrine induce distinct beta2 adrenoceptor signaling in cardiac myocytes. FASEB Journal, 2006, 20, .	0.2	0
78	PACS-2 controls endoplasmic reticulum–mitochondria communication and Bid-mediated apoptosis. EMBO Journal, 2005, 24, 717-729.	3.5	469
79	Phosphodiesterase 4D is required for Â2 adrenoceptor subtype-specific signaling in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 909-914.	3.3	116
80	Sequential Binding of Agonists to the β2 Adrenoceptor. Journal of Biological Chemistry, 2004, 279, 686-691.	1.6	311
81	The phosphorylation state of an autoregulatory domain controls PACS-1-directed protein traffic. EMBO Journal, 2003, 22, 6234-6244.	3.5	44
82	The PDZ-binding motif of the Â2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10776-10781.	3.3	88
83	The Third Intracellular Loop and the Carboxyl Terminus of β2-Adrenergic Receptor Confer Spontaneous Activity of the Receptor. Molecular Pharmacology, 2003, 64, 1048-1058.	1.0	33
84	Myocyte Adrenoceptor Signaling Pathways. Science, 2003, 300, 1530-1532.	6.0	192
85	The PDZ Binding Motif of the β1 Adrenergic Receptor Modulates Receptor Trafficking and Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2002, 277, 33783-33790.	1.6	99
86	Caveolar Localization Dictates Physiologic Signaling of β2-Adrenoceptors in Neonatal Cardiac Myocytes. Journal of Biological Chemistry, 2002, 277, 34280-34286.	1.6	219
87	Receptor Number and Caveolar Co-localization Determine Receptor Coupling Efficiency to Adenylyl Cyclase. Journal of Biological Chemistry, 2001, 276, 42063-42069.	1.6	233
88	PACS-1 Defines a Novel Gene Family of Cytosolic Sorting Proteins Required for trans-Golgi Network Localization. Cell, 1998, 94, 205-216.	13.5	337