List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036206/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling Viscosities of CaO–MgO–Al2O3–SiO2 Molten Slags. ISIJ International, 2012, 52, 355-362.	0.6	98
2	Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. International Journal of Refractory Metals and Hard Materials, 2013, 41, 216-223.	1.7	96
3	Modeling Viscosities of CaO-MgO-FeO-MnO-SiO2 Molten Slags. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 64-72.	1.0	84
4	A Structurally Based Viscosity Model for Oxide Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 698-706.	1.0	79
5	Oxidation roasting of molybdenite concentrate. Transactions of Nonferrous Metals Society of China, 2015, 25, 4167-4174.	1.7	54
6	Estimation of Sulfide Capacities of Multicomponent Slags using Optical Basicity. ISIJ International, 2013, 53, 761-767.	0.6	53
7	Measuring and Modeling Viscosity of CaO-Al2O3-SiO2(-K2O) Melt. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 841-848.	1.0	52
8	Study on kinetics of hydrogen reduction of MoO2. International Journal of Refractory Metals and Hard Materials, 2013, 41, 356-362.	1.7	52
9	Size-controlled synthesis of nano Mo powders via reduction of commercial MoO3 with carbon black and hydrogen. International Journal of Refractory Metals and Hard Materials, 2019, 80, 11-22.	1.7	51
10	A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders. International Journal of Refractory Metals and Hard Materials, 2019, 78, 100-106.	1.7	47
11	Kinetics and mechanism of hydrogen reduction of ilmenite powders. Journal of Alloys and Compounds, 2015, 619, 443-451.	2.8	45
12	Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction–carburization process. Journal of Alloys and Compounds, 2019, 784, 362-369.	2.8	44
13	Simple Method for Estimating the Electrical Conductivity of Oxide Melts with Optical Basicity. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 131-136.	1.0	43
14	Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 Melts Containing TiC Particles. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 155-161.	1.0	41
15	Study on oxidation mechanism and kinetics of MoO2 to MoO3 in air atmosphere. International Journal of Refractory Metals and Hard Materials, 2016, 57, 115-124.	1.7	39
16	Model for evaluating density of molten slag with optical basicity. Journal of Iron and Steel Research International, 2010, 17, 1-4.	1.4	37
17	Study on Hydrogen Reduction of Ultrafine MoO ₂ To Produce Ultrafine Mo. Journal of Physical Chemistry C, 2016, 120, 4097-4103.	1.5	37
18	Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. International Journal of Refractory Metals and Hard Materials, 2016, 54, 342-350.	1.7	37

#	Article	IF	CITATIONS
19	Correlation Between Viscosity and Electrical Conductivity of Aluminosilicate Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 849-855.	1.0	34
20	Influence of Pre-oxidation on Carbothermic Reduction Process of Ilmenite Concentrate. ISIJ International, 2015, 55, 928-933.	0.6	34
21	Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. International Journal of Refractory Metals and Hard Materials, 2018, 75, 70-77.	1.7	34
22	Preparation of Ultrafine β-MoO ₃ from Industrial Grade MoO ₃ Powder by the Method of Sublimation. Journal of Physical Chemistry C, 2016, 120, 19821-19829.	1.5	33
23	Relation Between Viscosity and Electrical Conductivity of Silicate Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 261-264.	1.0	31
24	Reduction Kinetics of Metal Oxides by Hydrogen. Steel Research International, 2013, 84, 526-533.	1.0	31
25	Synthesis of nanocrystalline molybdenum powder by hydrogen reduction of industrial grade MoO3. International Journal of Refractory Metals and Hard Materials, 2016, 59, 100-104.	1.7	31
26	Influence of Al2O3/SiO2 Ratio on Viscosities of CaO^ ^ndash;Al2O3^ ^ndash;SiO2 Melt. ISIJ International, 2013, 53, 177-180.	0.6	30
27	Influence of Al2O3/TiO2 Ratio on Viscosities and Structure of CaO–MgO–Al2O3–SiO2–TiO2 Melts. ISIJ International, 2014, 54, 985-989.	0.6	28
28	Morphology evolution and quantitative analysis of β-MoO3 and α-MoO3. High Temperature Materials and Processes, 2020, 39, 620-626.	0.6	28
29	Shape-Controlled Synthesis of Ultrafine Molybdenum Crystals via Salt-Assisted Reduction of MoO ₂ with H ₂ . Journal of Physical Chemistry C, 2018, 122, 10231-10239.	1.5	27
30	Synthesis of molybdenum nitrides nanosheets by nitriding 2Hâ€MoS ₂ with ammonia. Journal of the American Ceramic Society, 2018, 101, 2796-2808.	1.9	27
31	Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag. High Temperature Materials and Processes, 2016, 35, 309-319.	0.6	26
32	Sintering behavior of molybdenum‑copper and tungsten‑copper alloys by using ultrafine molybdenum and tungsten powders as raw materials. International Journal of Refractory Metals and Hard Materials, 2020, 88, 105194.	1.7	26
33	Influence of TiC on the Viscosity of CaO–MgO–Al ₂ O ₃ –SiO ₂ –TiC Suspension System. ISIJ International, 2015, 55, 922-927.	0.6	26
34	Viscosity model for fully liquid silicate melt. Journal of Mining and Metallurgy, Section B: Metallurgy, 2012, 48, 1-10.	0.3	25
35	Phase Evolution During the Carbothermic Reduction Process of Ilmenite Concentrate. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 48-56.	1.0	24
36	Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1134-1138.	1.0	23

#	Article	IF	CITATIONS
37	Influences of Al2O3/CaO and Na2O/CaO Ratios on Viscosities of CaO-Al2O3-SiO2-Na2O Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 123-130.	1.0	22
38	Mechanism and kinetics of the carbothermic reduction of titanium-bearing blast furnace slag. Metallurgical Research and Technology, 2016, 113, 507.	0.4	22
39	Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method. Journal of Solid State Chemistry, 2019, 277, 793-803.	1.4	22
40	Fabrication of ultrafine W-Cu composite powders and its sintering behavior. Journal of Materials Research and Technology, 2020, 9, 2154-2163.	2.6	22
41	Enhancement of the mechanical properties of ultrafine-grained WC-Co cemented carbides via the in-situ generation of VC. Journal of Alloys and Compounds, 2022, 903, 163961.	2.8	22
42	Preparation of Mo nanoparticles through hydrogen reduction of commercial MoO2 with the assistance of molten salt. International Journal of Refractory Metals and Hard Materials, 2019, 78, 68-75.	1.7	20
43	Kinetic study on carbothermic reduction of ilmenite with activated carbon. Transactions of Nonferrous Metals Society of China, 2017, 27, 1856-1861.	1.7	19
44	An industrially feasible pathway for preparation of Mo nanopowder and its sintering behavior. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105039.	1.7	19
45	Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction–carburization process. International Journal of Refractory Metals and Hard Materials, 2019, 84, 104975.	1.7	19
46	Influences of Na ₂ O and K ₂ O Additions on Electrical Conductivity of CaO-SiO ₂ -(Al ₂ O ₃) Melts. ISIJ International, 2017, 57, 2091-2096.	0.6	18
47	Reduction Kinetics of FeTiO3 Powder by Hydrogen. ISIJ International, 2012, 52, 1986-1989.	0.6	17
48	Electrolysis of Molten FeO _x -Containing CaO-Al ₂ O ₃ -SiO ₂ Slags under Constant Current Field. Journal of the Electrochemical Society, 2015, 162, E314-E318.	1.3	17
49	Formation of Titanium Carbonitride via Carbothermic Reduction of Ilmenite Concentrate in Nitrogen Atmosphere. ISIJ International, 2016, 56, 744-751.	0.6	17
50	Preparation of Ti5Si3 by silicothermic reduction of titanium-bearing blast furnace slag. Canadian Metallurgical Quarterly, 2018, 57, 80-88.	0.4	17
51	Effects of CaO/SiO2 ratio and heat treatment parameters on the crystallization behavior, microstructure and properties of SiO2-CaO-Al2O3-Na2O glass ceramics. Journal of Non-Crystalline Solids, 2020, 538, 120023.	1.5	17
52	Diffusion Coefficient of Calcium Ion in CaO-Al2O3-SiO2 Melts. Journal of Iron and Steel Research International, 2011, 18, 13-16.	1.4	16
53	A Morphological Study of the Reduction of MoO2 by Hydrogen. High Temperature Materials and Processes, 2015, 34, .	0.6	16
54	Study on hydrogen reduction of Mo4O11. International Journal of Refractory Metals and Hard Materials, 2015, 51, 275-281.	1.7	16

#	Article	IF	CITATIONS
55	Preparation of single-crystal spherical γ-Mo 2 N by temperature-programmed reaction between β-MoO 3 and NH 3. Journal of Solid State Chemistry, 2017, 254, 96-102.	1.4	16
56	Nanostructured oxide dispersion strengthened Mo alloys from Mo nanopowder doping with oxide nanoparticles. Journal of Materials Research and Technology, 2019, 8, 5753-5762.	2.6	16
57	Fabrication of pure V2O3 powders by reducing V2O5 powders with CO-CO2 mixed gases. Ceramics International, 2019, 45, 2117-2123.	2.3	16
58	Preparation of Low-Carbon and Low-Sulfur Fe-Cr-Ni-Si Alloy by Using CaSO4-Containing Stainless Steel Pickling Sludge. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2057-2067.	1.0	16
59	Synthesis of high purity nano-sized transition-metal carbides. Journal of Materials Research and Technology, 2020, 9, 11778-11790.	2.6	16
60	Mixed Alkali Effect in Viscosity of CaO-SiO2-Al2O3-R2O melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 985-1002.	1.0	16
61	Preparation of Ultrafine Tungsten-Molybdenum Composite Powder and Its Sintering Behavior. Metals and Materials International, 2021, 27, 1649-1661.	1.8	16
62	Deoxidation of Molten Steel by Aluminum. Journal of Iron and Steel Research International, 2015, 22, 905-908.	1.4	15
63	A novel method to synthesize submicrometer vanadium carbide by temperature programmed reaction from vanadium pentoxide and phenolic resin. International Journal of Refractory Metals and Hard Materials, 2017, 62, 64-69.	1.7	15
64	Preparation and purification of titanium carbide via vacuum carbothermic reduction of ilmenite. Vacuum, 2018, 151, 51-60.	1.6	15
65	A new route for preparing Mo-10wt.%Cu composite compacts. International Journal of Refractory Metals and Hard Materials, 2019, 81, 196-205.	1.7	15
66	Low-temperature synthesis of single-phase refractory metal compound carbides. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105567.	1.7	15
67	Superior strength-ductility synergy in a novel tailored Zr-based particle-strengthened medium W content alloys. Composites Part B: Engineering, 2022, 236, 109817.	5.9	15
68	A Novel Process to Synthesize High-Quality Ferrovanadium Nitride. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3405-3412.	1.0	14
69	Study of the Reduction of Industrial Grade MoO3 Powders with CO or CO-CO2 Gases to Prepare MoO2. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2047-2056.	1.0	14
70	Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 405-412.	2.4	14
71	Densification behavior of ultrafine W-Ni-Fe composite powders produced by a two-stage reduction process. Powder Technology, 2020, 360, 430-443.	2.1	14
72	Electrical Conductivity and Electronic/Ionic Properties of TiO x -CaO-SiO2 Slags at Various Oxygen Potentials and Temperatures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 798-803.	1.0	13

#	Article	IF	CITATIONS
73	Preparation of SiS and SiO ₂ Nanospheres. Industrial & Engineering Chemistry Research, 2017, 56, 12362-12368.	1.8	13
74	Preparation of high purity vanadium nitride by magnesiothermic reduction of V2O3 followed by nitriding in N2 atmosphere. Transactions of Nonferrous Metals Society of China, 2019, 29, 1776-1783.	1.7	13
75	A novel method for preparing ultrafine molybdenum powder. International Journal of Refractory Metals and Hard Materials, 2021, 96, 105491.	1.7	13
76	Effect of ZrB2 addition on microstructure evolution and mechanical properties of 93 wt.% tungsten heavy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141870.	2.6	13
77	N-doped graphene supported W2C/WC as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 902-916.	3.8	13
78	Effects of oxide addition on structure and properties of WC–10Co cemented carbide obtained by in situ synthesized powder. International Journal of Applied Ceramic Technology, 2022, 19, 1916-1928.	1.1	13
79	Deoxidation of Liquid Steel with Molten Slag by Using Electrochemical Method. ISIJ International, 2014, 54, 2767-2771.	0.6	12
80	Viscosity and Structure Changes of CaO-SiO2-Al2O3-CaF2 Melts with Substituting A12O3 for SiO2. Journal of Iron and Steel Research International, 2016, 23, 633-637.	1.4	12
81	Pyrophoric behaviour of ultrafine Mo powder. Corrosion Science, 2017, 128, 85-93.	3.0	12
82	Study on the preparation of molybdenum silicides by the silicothermic reduction of MoS2. Journal of Alloys and Compounds, 2017, 728, 295-306.	2.8	12
83	Preparation of Ultrafine W-10ÂWtÂPct Cu Composite Powders and Their Corresponding Sintered Compacts. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4827-4838.	1.1	12
84	Preparation of ultrafine/nano Mo particles via NaCl-assisted hydrogen reduction of different-sized MoO2 powders. International Journal of Refractory Metals and Hard Materials, 2019, 80, 243-252.	1.7	12
85	Novel Pathway to Prepare Mo Nanopowder via Hydrogen Reduction of MoO2 Containing Mo Nanoseeds Produced by Reducing MoO3 with Carbon Black. Jom, 2020, 72, 347-353.	0.9	12
86	Preparation and properties of Al2O3 dispersed fine-grained W-Cu alloy. Advanced Powder Technology, 2022, 33, 103523.	2.0	12
87	Modeling the Viscosity of Aluminoâ€Silicate Melt. Steel Research International, 2013, 84, 631-637.	1.0	11
88	Preparation of Mo2C by reducing ultrafine spherical β-MoO3 powders with CO or CO-CO2 gases. Journal of the Australian Ceramic Society, 2018, 54, 97-107.	1.1	11
89	A low ost and efficient pathway for preparation of 2D MoN nanosheets via Na ₂ CO ₃ â€essisted nitridation of MoS ₂ with NH ₃ . Journal of the American Ceramic Society, 2019, 102, 7178-7186.	1.9	11
90	Preparation of refractory metal diboride powder by reducing refractory metal oxide with calcium hexaboride. Ceramics International, 2019, 45, 15772-15777.	2.3	11

#	Article	IF	CITATIONS
91	Topochemical synthesis of holey 2D molybdenum nitrides nanosheets via lime-assisted nitridation of layered MoS2. Ceramics International, 2020, 46, 4024-4029.	2.3	11
92	A facile pathway to prepare molybdenum boride powder from molybdenum and boron carbide. Journal of the American Ceramic Society, 2020, 103, 2399-2406.	1.9	11
93	Preparation of Fine-Grained W-Ni-Fe Alloys by Using W Nanopowders. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3090-3103.	1.1	11
94	Effect of CeO2 and VC co-doping on the microstructure and properties of WC-10Co cemented carbide. International Journal of Refractory Metals and Hard Materials, 2022, 108, 105938.	1.7	11
95	Non-isothermal reduction kinetics of titanomagnetite by hydrogen. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 1134-1140.	2.4	10
96	Electronic/Ionic Properties of Fe _x O–SiO ₂ –CaO–Al ₂ O <sub> Slags at Various Oxygen Potentials and Temperatures. ISIJ International, 2015, 55, 2325-2331.</sub> 	;3& dt;¢ sub{	giti 0
97	Study on reduction reaction of MoO ₂ powder with <scp>NH</scp> ₃ . Journal of the American Ceramic Society, 2017, 100, 1368-1376.	1.9	10
98	A facile pathway to prepare VO2 and V2O3 powders via a carbothermal reduction process. Journal of Solid State Chemistry, 2018, 265, 299-305.	1.4	10
99	Preparation of αâ€5i ₃ N ₄ by direct nitridation using polysilicon waste by diamond wire cutting. International Journal of Applied Ceramic Technology, 2020, 17, 84-93.	1.1	10
100	Microstructure and mechanical properties of Al2O3 dispersed fine-grained medium heavy alloys with a superior combination of strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141376.	2.6	10
101	A short and facile process to synthesize WC-Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105288.	1.7	10
102	Preparation of MoO2 by the Solid State Reaction Between MoS2 and MoO3. Jom, 2016, 68, 1031-1036.	0.9	9
103	Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 130-138.	2.4	9
104	Effects of R 2 CO 3 (R = Li, Na and K) on the reduction of MoO 2 to Mo by hydrogen. International Journal of Refractory Metals and Hard Materials, 2017, 69, 180-188.	1.7	9
105	Synthesis of High-Quality FeV55N Alloy by Carbonitrothermic Reduction of Vanadium Pentoxide–Ferric Oxide Mixture. Jom, 2017, 69, 1676-1681.	0.9	9
106	Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 831-838.	2.4	9
107	Size-controlled synthesis of Mo powders via hydrogen reduction of MoO2 powders with the assistance of Mo nuclei. International Journal of Hydrogen Energy, 2020, 45, 1435-1443.	3.8	9
108	Preparation of high-purity and ultrafine WC-Co composite powder by a simple two-step process. Advanced Powder Technology, 2020, 31, 1940-1945.	2.0	9

#	Article	IF	CITATIONS
109	Mixed alkali effect in SiO2-CaO-Al2O3-TiO2-R2O (RÂ=ÂLi, Na) glass ceramics. Journal of Alloys and Compounds, 2021, 856, 158239.	2.8	9
110	Recovery of high-grade copper matte by selective sulfurization of CuO–Fe2O3–SiO2–CaO system. Journal of Materials Research and Technology, 2021, 13, 1676-1683.	2.6	9
111	Influences of Different Components on Agglomeration Behavior of MoS2 During Oxidation Roasting Process in Air. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2421-2432.	1.0	8
112	Phase evolution and reaction mechanism during reduction–nitridation process of titanium dioxide with ammonia. Journal of Materials Science, 2017, 52, 1255-1264.	1.7	8
113	Formation of submicrometer titanium nitride from a titanium dioxide/phenolic resin composite. Journal of Materials Science, 2017, 52, 7546-7554.	1.7	8
114	Preparation of Vanadium Nitride by Magnesiothermic Reduction of V2O3 in Nitrogen Atmosphere. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 3570-3579.	1.0	8
115	Preparation of Monophasic Tungsten boride powder from Tungsten and boron carbide. Ceramics International, 2021, 47, 9543-9550.	2.3	8
116	Effect of atmosphere control on magnetic properties of CaO-Al2O3-SiO2-Fe3O4 glass ceramics. Journal of the European Ceramic Society, 2021, 41, 2663-2673.	2.8	8
117	A facile route to prepare ODS WC Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105569.	1.7	8
118	Fabrication and Characterization of Tungsten Heavy Alloys with High W Content by Powder Metallurgy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1085-1098.	1.1	8
119	Formation of submicrometer titanium carbide from a titanium dioxide encapsulated in phenolic resin. Journal of Materials Science, 2016, 51, 7008-7015.	1.7	7
120	Corrosion behavior of carbon composite brick in high alumina slags. Ceramics International, 2018, 44, 5242-5249.	2.3	7
121	Low temperature synthesis of titanium diboride nanosheets by molten salt–assisted borothermal reduction of TiO2. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	7
122	Preparation of Ultrafine W Powder via Carbothermic Prereduction of Tungsten Oxide Followed by Deep Reduction with Hydrogen. Jom, 2020, 72, 379-384.	0.9	7
123	Study on the reduction of commercial MoO ₃ with carbon black to prepare MoO ₂ and Mo ₂ C nanoparticles. International Journal of Applied Ceramic Technology, 2020, 17, 917-931.	1.1	7
124	A universal method for the synthesis of refractory metal diborides. Ceramics International, 2021, 47, 14107-14114.	2.3	7
125	A novel sulfurâ€emission free route for preparing ultrafine MoSi 2 powder by silicothermic reduction of MoS 2. Journal of the American Ceramic Society, 2021, 104, 6092.	1.9	7
126	Fabrication and performances of WC o cemented carbide with a low cobalt content. International Journal of Applied Ceramic Technology, 2022, 19, 1341-1353.	1.1	7

#	Article	IF	CITATIONS
127	Calculation of Physicochemical Properties with Limited Discrete Data in Multicomponent Systems. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 223-232.	1.0	6
128	A New Route to Produce Submicron Mo Powders via Carbothermal Pre-reduction Followed by Deep Magnesium Reduction. Jom, 2018, 70, 2561-2566.	0.9	6
129	Synthesis of submicrometric VB2 powders by a boro-carbothermal reduction route. Ceramics International, 2019, 45, 2492-2497.	2.3	6
130	Preparation of CaB6 powder via calciothermic reduction of boron carbide. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 37-45.	2.4	6
131	Synthesis of high-purity ultrafine tungsten and tungsten carbide powders. Transactions of Nonferrous Metals Society of China, 2020, 30, 1697-1706.	1.7	6
132	Topochemical synthesis of two-dimensional molybdenum carbide (Mo2C) via Na2CO3-Assited carbothermal reduction of 2H–MoS2. Materials Chemistry and Physics, 2020, 244, 122713.	2.0	6
133	Synthesis of high-quality ferrovanadium nitride by carbothermal reduction nitridation method. Journal of Iron and Steel Research International, 2021, 28, 255-262.	1.4	6
134	Fabrication and Mechanical Properties of Mo-Al2O3 Cermets by Using Ultrafine Molybdenum and Nano-sized Alumina Powders. Jom, 2021, 73, 3451-3459.	0.9	6
135	Preparation of nano-scaled WC powder by low-temperature carbothermic reduction method. International Journal of Refractory Metals and Hard Materials, 2022, 102, 105724.	1.7	6
136	Preparations of lanthanum hexaboride (LaB ₆) and cerium hexaboride (CeB ₆). Journal of the American Ceramic Society, 2022, 105, 1954-1966.	1.9	6
137	Controllable syntheses of Mo5Si3 and Mo3Si by silicothermic reduction of MoS2 in the presence of lime. Ceramics International, 2022, 48, 7815-7826.	2.3	6
138	Mechanism of Sodium Carbonate-Assisted Carbothermic Reduction of Titanomagnetite Concentrate. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 2272-2292.	1.0	6
139	Preparation of High-Quality FeV55N Using Ammonia as a Reductant and Nitrogen Source. Jom, 2018, 70, 2493-2498.	0.9	5
140	A facile pathway to prepare ultrafine WC powder via a carbothermic pre-reduction followed by carbonization with CH4-H2 mixed gases. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105118.	1.7	5
141	Preparation of ultrafine molybdenum carbide (Mo2C) powder by carbothermic reduction of molybdenum trioxide (MoO3). Journal of the Australian Ceramic Society, 2020, 56, 1333-1340.	1.1	5
142	Topochemical synthesis of one-dimensional Mo2C nanobelts. Ceramics International, 2020, 46, 12891-12896.	2.3	5
143	Sublimation Behavior of Industrial Grade Molybdenum Trioxide. Transactions of the Indian Institute of Metals, 2021, 74, 1469-1477.	0.7	5
144	Effect of Si on Desulfurization in Fe–Si–S, Fe–Si–Cr–S and Fe–Si–Ni–S Melts. ISIJ International, 2 60, 636-639.	2020, 0.6	5

9

#	Article	IF	CITATIONS
145	Effect of molybdenum addition on microstructure and mechanical properties of 90% tungsten heavy alloys. International Journal of Refractory Metals and Hard Materials, 2022, 106, 105868.	1.7	5
146	Preparation of industrial grade MoO ₂ by the reaction between industrial grade MoO ₃ and activated carbon. Metallurgical Research and Technology, 2018, 115, 416.	0.4	4
147	Shape-controlled Preparation of Mo Powder by Temperature-programmed Reduction of MoO ₃ by NH ₃ . Chemistry Letters, 2019, 48, 475-478.	0.7	4
148	Reaction Behavior of SiC with CaO–SiO ₂ –Al ₂ O ₃ Slag. ISIJ International, 2021, 61, 745-752.	0.6	4
149	Comparison of hot pressing sintering and conventional powder-sintering in preparation of CaO-Al2O3-SiO2-Fe3O4-R2O glass ceramics. Journal of Non-Crystalline Solids, 2021, 564, 120829.	1.5	4
150	Preparation of fully dense and magnetically controllable CaO-Al2O3-SiO2-Na2O-Fe3O4 glass ceramics by hot pressing. Journal of the European Ceramic Society, 2021, 41, 5201-5213.	2.8	4
151	Preparation of titanium carbide powder from ilmenite concentrate. Chemical Industry and Chemical Engineering Quarterly, 2017, 23, 67-72.	0.4	4
152	Preparation of Ni–Fe–S Matte from Nickeliferous Laterite Ore Using CaS as the Sulfurization Agent. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 1136-1147.	1.0	4
153	Boronation reaction between molybdenum or tungsten powder and boron carbide in aluminium melt. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105813.	1.7	4
154	Electrical Conductivities of High Aluminum Blast Furnace Slags. ISIJ International, 2019, 59, 427-431.	0.6	3
155	Preparation technology of Ti-rich material from ilmenite via method of vacuum carbothermal reduction. Canadian Metallurgical Quarterly, 2019, 58, 196-203.	0.4	3
156	Viscosity of CaO–MgO–Al ₂ O ₃ –SiO ₂ melts containing SiC particles. Ironmaking and Steelmaking, 2019, 46, 705-711.	1.1	3
157	Seeded growth synthesis of W nanoparticles in reduction process of WO2 by hydrogen. Journal of Alloys and Compounds, 2020, 819, 153371.	2.8	3
158	Desulfurizer-Enhanced Carbothermal Reduction of MoS2 to Synthesize Mo2C. Jom, 2020, 72, 4030-4041.	0.9	3
159	CaO-Assisted Carbothermal Reduction of MoS2 to Synthesize Molybdenum Powder. Jom, 2021, 73, 2540.	0.9	3
160	A novel method for preparing Ti5Si3 from Ti-bearing blast furnace slag. Metallurgical Research and Technology, 2020, 117, 614.	0.4	3
161	Recovery of Cu-Fe-S matte from electroplating sludge via the sulfurization-smelting method. Journal of Environmental Chemical Engineering, 2022, 10, 108266.	3.3	3
162	Thermodynamic Assessment of Liquid Mn–Fe–Si–C–Ca–P System by Unified Interaction Parameter Model. ISIJ International, 2016, 56, 917-925.	0.6	2

#	Article	IF	CITATIONS
163	Study on Reaction Mechanism of Reducing Dephosphorization of Fe-Ni-Si Melt by CaO-CaF2 Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 16-18.	1.0	2
164	Estimation for Iron Redox Equilibria in Multicomponent Slags. High Temperature Materials and Processes, 2017, 36, 567-571.	0.6	2
165	Fabrication of magnetically controllable glass ceramics with completely dense microstructure by hot pressing. International Journal of Applied Ceramic Technology, 2022, 19, 312-319.	1.1	2
166	A Sulfur Emission-Free Route for the Synthesis of Mo and Mo2C via Carbothermal Reduction of MoS2. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 0, , 1.	1.0	2
167	Effect of vacuum heat treatment on microstructure evolution and mechanical properties of 93W-4.9Ni-2.1Fe-(ZrB2) alloys. Powder Technology, 2022, 400, 117276.	2.1	2
168	Preparation of rare earth borides by reaction among rare earth oxides, boron carbide, and calcium. Journal of the Australian Ceramic Society, 2022, 58, 1367-1373.	1.1	2
169	Preparation of submicron Mo powders by the reaction between MoO2 and activated carbon. Journal of the Australian Ceramic Society, 2019, 55, 297-303.	1.1	1
170	Study on Electrical Conductivity of CaO-SiO2-Al2O3-FeOx Slags. , 2016, , 1335-1342.		1
171	Controllable synthesis of Mo2C with different morphology and application to electrocatalytic hydrogen evolution reaction. Nanotechnology, 2021, , .	1.3	1
172	Effect of Ni/Fe ratio on activation sintering and mechanical properties of molybdenum nickel iron alloy. Journal of Central South University, 2022, 29, 1423-1436.	1.2	1
173	Valuable metals recovery and vitrification of chromium-containing electroplating sludge. Metallurgical Research and Technology, 2022, 119, 402.	0.4	1
174	Calculation of Activation Energy in Multiphase Reaction. High Temperature Materials and Processes, 2012, 31, .	0.6	0
175	Nitrogen Solubility in Mn–Si–Fe Melts. ISIJ International, 2017, 57, 764-766.	0.6	0
176	Study on the separation of silicon from refining slag of industrial silicon. Metallurgical Research and Technology, 2021, 118, 402.	0.4	0