Feng Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036134/publications.pdf Version: 2024-02-01

FENC VIN

#	Article	IF	CITATIONS
1	Ni ²⁺ â€Directed Anisotropic Growth of PtCu Nested Skeleton Cubes Boosting Electroreduction of Oxygen. Advanced Science, 2022, 9, e2104927.	11.2	14
2	Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts. Journal of Power Sources, 2021, 485, 229340.	7.8	21
3	PtGd/Gd2O3 alloy/metal oxide composite catalyst for methanol oxidation reaction. International Journal of Hydrogen Energy, 2021, 46, 25782-25789.	7.1	14
4	Co/N-doped carbon nanotubes-grafted porous carbon sheets architecture as efficient electrocatalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 871, 159566.	5.5	25
5	Rare Earth Gadolinium-Modified Platinum-Based Bimetallic Nanomaterial as a Cathodic Catalyst for the Oxygen Reduction Reaction. Energy & amp; Fuels, 2021, 35, 14868-14875.	5.1	4
6	Optimized oxygen reduction activity by tuning shell component in Pd@Pt-based core-shell electrocatalysts. Journal of Colloid and Interface Science, 2021, 604, 301-309.	9.4	4
7	Emerging uniform Cu ₂ O nanocubes for 251st harmonic ultrashort pulse generation. Journal of Materials Chemistry C, 2020, 8, 14386-14392.	5.5	57
8	The enhanced activity of Pt–Ce nanoalloy for oxygen electroreduction. Scientific Reports, 2020, 10, 14837.	3.3	26
9	Size control of Au nanoparticles from the scalable and solvent-free matrix assembly cluster source. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	27
10	Angular dependence of nanoparticle generation in the matrix assembly cluster source. Nano Research, 2019, 12, 3069-3074.	10.4	5
11	Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties. Sensors and Actuators B: Chemical, 2018, 264, 128-138.	7.8	121
12	Crystal facet-dependent p-type and n-type sensing responses of TiO 2 nanocrystals. Sensors and Actuators B: Chemical, 2018, 263, 557-567.	7.8	48
13	Hierarchical Bi 2 WO 6 architectures decorated with Pd nanoparticles for enhanced visible-light-driven photocatalytic activities. Applied Surface Science, 2017, 404, 282-290.	6.1	36
14	Abnormal p-type sensing response of TiO2 nanosheets with exposed {001} facets. Journal of Alloys and Compounds, 2017, 705, 112-117.	5.5	43
15	Synthesis of porous NiO-In 2 O 3 composite nanofibers by electrospinning and their highly enhanced gas sensing properties. Journal of Alloys and Compounds, 2017, 699, 567-574.	5.5	57
16	Note: Proof of principle of a new type of cluster beam source with potential for scale-up. Review of Scientific Instruments, 2016, 87, 046103.	1.3	56
17	The cluster beam route to model catalysts and beyond. Faraday Discussions, 2016, 188, 39-56.	3.2	39
18	Three-dimensionally Hierarchical Bi ₂ WO ₆ Architectures with Enhanced Photocatalytic Activity. Nano, 2016, 11, 1650135.	1.0	3

Feng Yin

#	Article	IF	CITATIONS
19	Enhanced photocatalytic activity of flowerlike CuO–ZnO nanocomposites synthesized by one-step hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 10667-10672.	2.2	16
20	Pt Diffusion Dynamics for the Formation Cr–Pt Core–Shell Nanoparticles. Langmuir, 2015, 31, 6917-6923.	3.5	12
21	Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation. Scientific Reports, 2015, 5, 8276.	3.3	8
22	Simple metal under tensile stress: layer-dependent herringbone reconstruction of thin potassium films on graphite. Scientific Reports, 2015, 5, 10165.	3.3	5
23	Non-covalent Immobilization of Desmoplakin Plakin Domain Molecules by Size-Selected Clusters for AFM Imaging. BioNanoScience, 2014, 4, 97-103.	3.5	0
24	Size-dependent propagation of Au nanoclusters through few-layer graphene. Nanoscale, 2014, 6, 1258-1263.	5.6	31
25	Enhanced Immobilization of Gold Nanoclusters on Graphite. Journal of Physical Chemistry A, 2014, 118, 8182-8187.	2.5	9
26	Ageing of mass-selected Cu/Au and Au/Cu core/shell clusters probed with atomic resolution. Journal of Experimental Nanoscience, 2012, 7, 703-710.	2.4	23
27	Formation of bimetallic nanoalloys by Au coating of size-selected Cu clusters. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	9
28	Towards nanostructured graphene through the deposition of size-selected clusters. , 2012, , .		0
29	Controlled Formation of Mass-Selected Cu–Au Core–Shell Cluster Beams. Journal of the American Chemical Society, 2011, 133, 10325-10327.	13.7	84
30	Communication: Suppression of sintering of size-selected Pd clusters under realistic reaction conditions for catalysis. Journal of Chemical Physics, 2011, 134, 141101.	3.0	25
31	Counting the Atoms in Supported, Monolayer-Protected Gold Clusters. Journal of the American Chemical Society, 2010, 132, 2854-2855.	13.7	56
32	Bright Beaches of Nanoscale Potassium Islands on Graphite in STM Imaging. Physical Review Letters, 2009, 102, 106102.	7.8	18
33	Critical stability of gold nanofingers on a zero-gradient stepped surface. Journal of Physics Condensed Matter, 2009, 21, 445001.	1.8	2
34	The C60/Au(111) interface at room temperature: A scanning tunnelling microscopy study. Surface Science, 2008, 602, 885-892.	1.9	46
35	High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotechnology, 2008, 3, 168-173.	31.5	575
36	Structures and optical properties of 4–5 nm bimetallic AgAu nanoparticles. Faraday Discussions, 2008, 138. 363-373.	3.2	103

Feng Yin

#	Article	IF	CITATIONS
37	Faceting of nanoscale fingers on the (111) surface of gold. Surface Science, 2006, 600, 1504-1509.	1.9	19
38	Nanostructured Gold Surfaces Fabricated with the Scanning Tunnelling Microscope. Japanese Journal of Applied Physics, 2006, 45, 2053-2055.	1.5	7
39	Nanoscale surface recrystallization driven by localized electric field. Physical Review B, 2006, 73, .	3.2	19
40	High-Temperature Stability of Size-Selected Gold Nanoclusters Pinned on Graphite. Advanced Materials, 2005, 17, 731-734.	21.0	15
41	Beyond the Herringbone Reconstruction: Magic Gold Fingers. Small, 2004, 1, 76-79.	10.0	31
42	Liquid phase deposition of supramolecular monolayers of zinc porphyrin molecules on graphite. Journal of Physics Condensed Matter, 2003, 15, S3127-S3138.	1.8	11
43	Effect of Chemical Treatment on TiO ₂ Particles by IMPS. Chinese Journal of Chemistry, 2002, 20, 978-982.	4.9	3
44	Studies on the interfacial charge transfer processes of nanocrystalline CdSe thin film electrodes by intensity modulated photocurrent spectroscopy. Science in China Series B: Chemistry, 2000, 43, 443-449.	0.8	4
45	Photoelectrochemical studies of H2 evolution in aqueous methanol solution photocatalysed by Q-ZnS particles. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 125, 135-138.	3.9	7
46	Interfacial Charge Transfer Behaviors of Nanoparticulate CdSe Thin Film Electrodes. Zeitschrift Fur Physikalische Chemie, 1999, 213, 1-7.	2.8	2
47	Enhancement of the photoluminescence intensity of porous silicon by absorbed organic molecule. Science Bulletin, 1998, 43, 616-616.	1.7	0
48	Effects of 9-cyanoanthracene and anthracene adsorption on the photoluminescence of porous silicon. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 112, 59-61.	3.9	2
49	Photoluminescence Enhancement of Porous Silicon by Organic Cyano Compounds. Journal of Physical Chemistry B, 1998, 102, 7978-7982.	2.6	12
50	Photoluminescence Quenching of Porous Silicon by Molecule Adsorption. Chinese Physics Letters, 1998, 15, 756-757.	3.3	0
51	Investigation on the surface reactivity of luminescent porous silicon. Applied Surface Science, 1997, 119, 310-312.	6.1	7