Izabela Janowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8035845/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Industrial molasses waste in the performant synthesis of few-layer graphene and its Au/Ag nanoparticles nanocomposites. Photocatalytic and supercapacitance applications. Journal of Cleaner Production, 2022, 351, 131540.	4.6	32
2	Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. International Journal of Biological Macromolecules, 2021, 167, 1176-1197.	3.6	95
3	Few Layer Graphene/TiO ₂ Composites for Enhanced Solar-Driven H ₂ Production from Methanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 3633-3646.	3.2	10
4	Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. Journal of Materials Research and Technology, 2021, 11, 85-97.	2.6	82
5	Great enhancement of mechanical features in <scp>PLA</scp> based composites containing aligned few layer graphene (<scp>FLG</scp>), the effect of <scp>FLG</scp> loading, size, and dispersion on mechanical and thermal properties. Journal of Applied Polymer Science, 2021, 138, 51300.	1.3	8
6	Structural impact of carbon nanofibers/few-layer-graphene substrate decorated with Ni for CO2 methanation via inductive heating. Applied Catalysis B: Environmental, 2021, 298, 120589.	10.8	9
7	Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites. Materials, 2020, 13, 3809.	1.3	14
8	Polyvinyl Alcohol-Few Layer Graphene Composite Films Prepared from Aqueous Colloids. Investigations of Mechanical, Conductive and Gas Barrier Properties. Nanomaterials, 2020, 10, 858.	1.9	16

#	Article	IF	CITATIONS
19	Comparative study on the properties of poly(trimethylene terephthalate) -based nanocomposites containing multi-walled carbon (MWCNT) and tungsten disulfide (INT-WS ₂) nanotubes. Polymers for Advanced Technologies, 2017, 28, 645-657.	1.6	11
20	The Electrical Property of Large Few Layer Graphene Flakes Obtained by Microwaves Assisted Exfoliation of Expanded Graphite. Current Microwave Chemistry, 2016, 3, 139-144.	0.2	4
21	Tribological and mechanical investigation of acrylic-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT. Materials Chemistry and Physics, 2016, 175, 206-214.	2.0	22
22	Examining the impact of multi-layer graphene using cellular and amphibian models. 2D Materials, 2016, 3, 025009.	2.0	18
23	Macronization/densification of graphenes via vibratory compaction. Powder Technology, 2016, 295, 303-306.	2.1	1
24	Influence of the reaction temperature on the oxygen reduction reaction on nitrogen-doped carbon nanotube catalysts. Catalysis Today, 2015, 249, 236-243.	2.2	22
25	A highly N-doped carbon phase "dressing―of macroscopic supports for catalytic applications. Chemical Communications, 2015, 51, 14393-14396.	2.2	43
26	Evaporation-induced self-assembling of few-layer graphene into a fractal-like conductive macro-network with a reduction of percolation threshold. Physical Chemistry Chemical Physics, 2015, 17, 7634-7638.	1.3	5
27	Activation of few layer graphene by μ4W-assisted oxidation in water via formation of nanoballs – Support for platinum nanoparticles. Journal of Colloid and Interface Science, 2015, 451, 221-230.	5.0	13
28	Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications. Small, 2015, 11, 3485-3493.	5.2	54
29	Electrical Transport in "Few-Layer Graphene―Film Prepared by the Hot-Spray Technique: The Effect of Thermal Treatment. Journal of Physical Chemistry C, 2014, 118, 873-880.	1.5	6
30	A few-layer graphene–graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014, 2, 11349-11357.	5.2	63
31	Few-layered graphene-supported palladium as a highly efficient catalyst in oxygen reduction reaction. Chemical Communications, 2014, 50, 14433-14435.	2.2	32
32	Effect of nitriding/nanostructuration of few layer graphene supported iron-based particles; catalyst in graphene etching and carbon nanofilament growth. Physical Chemistry Chemical Physics, 2014, 16, 15988.	1.3	22
33	Formation and characterization of carbon–metal nano-contacts. Carbon, 2014, 77, 906-911.	5.4	18
34	Nitrogen-doped carbon nanotubes decorated silicon carbide as a metal-free catalyst for partial oxidation of H2S. Applied Catalysis A: General, 2014, 482, 397-406.	2.2	52
35	Silicon carbide foam decorated with carbon nanofibers as catalytic stirrer in liquid-phase hydrogenation reactions. Applied Catalysis A: General, 2014, 469, 81-88.	2.2	32
36	Few layer graphene decorated with homogeneous magnetic Fe3O4 nanoparticles with tunable covering densities. Journal of Materials Chemistry A, 2014, 2, 2690.	5.2	45

Izabela Janowska

#	Article	IF	CITATIONS
37	A 3D insight on the catalytic nanostructuration of few-layer graphene. Nature Communications, 2014, 5, 4109.	5.8	23
38	Hydrophobic gold catalysts: From synthesis on passivated silica to synthesis on few-layer graphene. Catalysis Today, 2014, 235, 90-97.	2.2	13
39	Tribological Study of PMMA/Carbon Nanocomposites for Antifriction Coatings. , 2014, , .		ο
40	A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles. Nanoscale, 2013, 5, 9073.	2.8	15
41	Electrical Transport Measured in Atomic Carbon Chains. Nano Letters, 2013, 13, 3487-3493.	4.5	192
42	FLG–high aspect ratio MWNTs hybrid film prepared by hot spray technique. Materials Letters, 2013, 96, 57-59.	1.3	4
43	Carbon nanotube channels selectively filled with monodispersed Fe3â^'xO4 nanoparticles. Journal of Materials Chemistry A, 2013, 1, 13853.	5.2	27
44	Effect of the Specific Surface Sites on the Reducibility of α-Fe ₂ O ₃ /Graphene Composites by Hydrogen. Journal of Physical Chemistry C, 2013, 117, 20313-20319.	1.5	15
45	Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. Journal of Materials Chemistry A, 2013, 1, 9508.	5.2	69
46	Few-layer graphene supporting palladium nanoparticles with a fully accessible effective surface for liquid-phase hydrogenation reaction. Catalysis Today, 2012, 189, 77-82.	2.2	38
47	On the Evolution of Pt Nanoparticles on Few-Layer Graphene Supports in the High-Temperature Range. Journal of Physical Chemistry C, 2012, 116, 9274-9282.	1.5	47
48	Synthesis of transparent vertically aligned TiO ₂ nanotubes on a few-layer graphene (FLG) film. Chemical Communications, 2012, 48, 1224-1226.	2.2	18
49	3D Analysis of the Morphology and Spatial Distribution of Nitrogen in Nitrogen-Doped Carbon Nanotubes by Energy-Filtered Transmission Electron Microscopy Tomography. Journal of the American Chemical Society, 2012, 134, 9672-9680.	6.6	87
50	Mechanical thinning to make few-layer graphene from pencil lead. Carbon, 2012, 50, 3106-3110.	5.4	57
51	Influence of ethanol in the presence of H2 on the catalytic growth of vertically aligned carbon nanotubes. Applied Catalysis A: General, 2012, 423-424, 7-14.	2.2	14
52	Macroscopic shaping of carbon nanotubes with high specific surface area and full accessibility. Materials Letters, 2012, 79, 128-131.	1.3	29
53	High yield graphene and few-layer graphene synthesis assisted by microwaves. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1009-1011.	1.3	7
54	Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Metalâ€Free Catalyst for Selective Oxidation. ChemSusChem, 2012, 5, 102-108.	3.6	162

Izabela Janowska

#	Article	IF	CITATIONS
55	Catalytic Action of Gold and Copper Crystals in the Growth of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 3609-3615.	0.9	7
56	Urchin-like self-supported carbon nanotubes with macroscopic shaping and fully accessible surface. Materials Letters, 2011, 65, 2482-2485.	1.3	2
57	High temperature stability of platinum nanoparticles on few-layer graphene investigated by In Situ high resolution transmission electron microscopy. Nano Research, 2011, 4, 511-521.	5.8	33
58	A new recyclable Pd catalyst supported on vertically aligned carbon nanotubes for microwaves-assisted Heck reactions. Comptes Rendus Chimie, 2011, 14, 663-670.	0.2	8
59	Catalytic synthesis of a high aspect ratio carbon nanotubes bridging carbon felt composite with improved electrical conductivity and effective surface area. Applied Catalysis A: General, 2011, 392, 238-247.	2.2	14
60	Bucky paper with improved mechanical stability made from vertically aligned carbon nanotubes for desulfurization process. Applied Catalysis A: General, 2011, 400, 230-237.	2.2	17
61	Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Research, 2010, 3, 126-137.	5.8	123
62	Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Applied Catalysis A: General, 2010, 380, 72-80.	2.2	196
63	High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catalysis Today, 2010, 150, 133-139.	2.2	12
64	Analytical electron tomography mapping of the SiC pore oxidation at the nanoscale. Nanoscale, 2010, 2, 2668.	2.8	32
65	Growth of Singleâ€Walled Carbon Nanotubes from Sharp Metal Tips. Small, 2009, 5, 2710-2715.	5.2	29
66	Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catalysis Today, 2009, 145, 76-84.	2.2	21
67	Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Applied Catalysis A: General, 2009, 371, 22-30.	2.2	57
68	Selective Deposition of Palladium Nanoparticles inside the Bimodal Porosity of Î ² -SiC Investigated by Electron Tomography. Journal of Physical Chemistry C, 2009, 113, 17711-17719.	1.5	22
69	N-doped carbon nanotubes for liquid-phase CC bond hydrogenation. Catalysis Today, 2008, 138, 62-68.	2.2	92
70	Microstructural Investigation of Magnetic CoFe2O4Nanowires inside Carbon Nanotubes by Electron Tomography. Nano Letters, 2008, 8, 1033-1040.	4.5	50
71	Structured silica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction. Journal of Molecular Catalysis A, 2007, 267, 92-97.	4.8	42
72	Donorâ^'Acceptorâ^'Donor Tetrazines Containing a Ferrocene Unit:Â Synthesis, Electrochemical and Spectroscopic Properties. Journal of Physical Chemistry A, 2006, 110, 12971-12975.	1.1	34

#	ARTICLE	IF	CITATIONS
73	Ferrocenyl D–ĩ€â€"A conjugated polyenes with 3-dicyanomethylidene-1-indanone and 1,3-bis(dicyanomethylidene)indane acceptor groups: Synthesis, linear and second-order nonlinear optical properties and electrochemistry. Journal of Organometallic Chemistry, 2006, 691, 323-330.	0.8	34
74	Charge-assisted N—HI and C—HI hydrogen bonding in (1R,2S)-1-(ferrocenylmethyl)-2-(methoxymethyl)pyrrolidinium iodide. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m55-m57.	0.4	3
75	Synthesis and Structure of a Four-Coordinate Aluminum Alkyl Cation/HB(C6F5)3Salt:Â Implication in a B(C6F5)3-Catalyzed Hydroalumination Reaction of Benzophenone or Benzaldehyde. Organometallics, 2004, 23, 4706-4710.	1.1	37
76	A Convenient Synthesis of Conjugated ω-Arylpolyenals via Wittig Reaction with (1,3-Dioxan-2-yl-methyl)triphenylphosphonium Bromide/Sodium Hydride ChemInform, 2003, 34, no.	0.1	0
77	Circular dichroism spectra of planar chiral 2-substituted ferrocenecarboxaldehydes and 2-ferrocenyl-1,1-dicyanoethylenes. Tetrahedron: Asymmetry, 2003, 14, 3271-3273.	1.8	12
78	Ferrocenyl D-ï€-A chromophores containing 3-dicyanomethylidene-1-indanone and 1,3-bis(dicyanomethylidene)indane acceptor groups. Journal of Organometallic Chemistry, 2003, 675, 35-41.	0.8	35
79	A Convenient Synthesis of Conjugated ω-Arylpolyenals via Wittig Reaction with (1,3-Dioxan-2-yl-methyl)triphenylphosphonium Bromide/Sodium Hydride. Synthetic Communications, 2003, 33, 381-385	1.1	11