Aamir Ahmad

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8035516/aamir-ahmad-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 235
 11,806
 61
 100

 papers
 citations
 h-index
 g-index

 256
 13,202
 6
 6.46

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
235	Mechanism of Gallic Acid Anticancer Activity Through Copper-Mediated Cell Death 2022 , 2559-2570		
234	Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention <i>Biologia Futura</i> , 2022 , 73, 55	1	1
233	Bioinformatics analysis of potential therapeutic targets for COVID-19 infection in patients with carotid atherosclerosis <i>Journal of Infection and Public Health</i> , 2022 , 15, 437-447	7.4	
232	Exosome-Mediated Response to Cancer Therapy: Modulation of Epigenetic Machinery. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 6222	6.3	1
231	Mechanism of Gallic Acid Anticancer Activity Through Copper Mediated Cell Death 2021 , 1-12		
230	Natural resorcylic acid lactones: A chemical biology approach for anticancer activity. <i>Drug Discovery Today</i> , 2021 ,	8.8	4
229	The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 740303	5.7	4
228	Yb/Chitosan Catalyzed Synthesis of Highly Substituted Piperidine Derivatives for Potential Nuclease Activity and DNA Binding Study. <i>Current Pharmaceutical Design</i> , 2021 , 27, 2252-2263	3.3	1
227	Exosomal miR-2276-5p in Plasma Is a Potential Diagnostic and Prognostic Biomarker in Glioma. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 671202	5.7	4
226	Anticancer Active Heterocyclic Chalcones: Recent Developments. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2021 , 21, 558-566	2.2	5
225	Transcriptional control of the oxidative stress response and implications of using plant derived molecules for therapeutic interventions in cancer. <i>Current Medicinal Chemistry</i> , 2021 ,	4.3	3
224	Long non-coding RNAs regulated NF- B signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. <i>Seminars in Cancer Biology</i> , 2021 ,	12.7	6
223	The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. <i>Cancer and Metastasis Reviews</i> , 2021 , 40, 691-720	9.6	6
222	Thiostrepton inhibits growth and induces apoptosis by targeting FoxM1/SKP2/MTH1 axis in B-precursor acute lymphoblastic leukemia cells. <i>Leukemia and Lymphoma</i> , 2021 , 62, 3170-3180	1.9	1
221	Sex differences in cardiopulmonary effects of acute bromine exposure. <i>Toxicology Research</i> , 2021 , 10, 1064-1073	2.6	2
220	Epigenetic regulation of immunosuppressive tumor-associated macrophages through dysregulated microRNAs. <i>Seminars in Cell and Developmental Biology</i> , 2021 ,	7·5	1
219	Differential non-coding RNAs expression profiles of invasive and non-invasive pituitary adenomas. <i>Non-coding RNA Research</i> , 2021 , 6, 115-122	6	3

218	Long non-coding RNAs in oncourology. <i>Non-coding RNA Research</i> , 2021 , 6, 139-145	6	2
217	Nuclear Factor Kappa-B: Bridging Inflammation and Cancer 2021 , 23-49		
216	Circular RNAs as biomarkers and therapeutic targets in cancer. Seminars in Cancer Biology, 2021,	12.7	8
215	Plant-derived small molecule inhibitors as modulators of EMT pathway in cancer chemoprevention. <i>Studies in Natural Products Chemistry</i> , 2021 , 45-65	1.5	
214	Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. <i>Seminars in Cancer Biology</i> , 2021 ,	12.7	9
213	Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	7
212	CAR-T Cell Therapies: An Overview of Clinical Studies Supporting Their Approved Use against Acute Lymphoblastic Leukemia and Large B-Cell Lymphomas. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	24
211	Sanguinarine Induces Apoptosis in Papillary Thyroid Cancer Cells via Generation of Reactive Oxygen Species. <i>Molecules</i> , 2020 , 25,	4.8	7
210	MicroRNA-mediated inflammation and coagulation effects in rats exposed to an inhaled analog of sulfur mustard. <i>Annals of the New York Academy of Sciences</i> , 2020 , 1479, 148-158	6.5	7
209	Curcumin-Mediated Apoptotic Cell Death in Papillary Thyroid Cancer and Cancer Stem-Like Cells through Targeting of the JAK/STAT3 Signaling Pathway. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	30
208	EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/ECatenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. <i>Cancers</i> , 2020 , 12,	6.6	19
207	Cutaneous lewisite exposure causes acute lung injury. <i>Annals of the New York Academy of Sciences</i> , 2020 , 1479, 210-222	6.5	9
206	Circulating and tissue biomarkers as predictors of bromine gas inhalation. <i>Annals of the New York Academy of Sciences</i> , 2020 , 1480, 104-115	6.5	5
205	MicroRNA regulation of TRAIL mediated signaling in different cancers: Control of micro steering wheels during the journey from bench-top to the bedside. <i>Seminars in Cancer Biology</i> , 2019 , 58, 56-64	12.7	9
204	Pentafluorophenyl Substitution of Natural Di(indol-3-yl)methane Strongly Enhances Growth Inhibition and Apoptosis Induction in Various Cancer Cell Lines. <i>Chemistry and Biodiversity</i> , 2019 , 16, e1	96602	8 3
203	Natural Product Mediated Regulation of Death Receptors and Intracellular Machinery: Fresh from the Pipeline about TRAIL-Mediated Signaling and Natural TRAIL Sensitizers. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	10
202	Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. <i>Neuroscience and Biobehavioral Reviews</i> , 2019 , 102, 95-105	9	31
201	Cancer Epigenetics: Clinical Perspectives. <i>Current Cancer Drug Targets</i> , 2019 , 19, 513-514	2.8	1

200 Epigenetic Control of Pancreatic Carcinogenesis and Its Regulation by Natural Products **2019**, 251-270

199	Breast Cancer Statistics: Recent Trends. Advances in Experimental Medicine and Biology, 2019 , 1152, 1-7	3.6	79
198	Current Updates on Trastuzumab Resistance in HER2 Overexpressing Breast Cancers. <i>Advances in Experimental Medicine and Biology</i> , 2019 , 1152, 217-228	3.6	13
197	Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. <i>Advances in Experimental Medicine and Biology</i> , 2019 , 1152, 229-241	3.6	15
196	Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	26
195	Differential Methylation and Acetylation as the Epigenetic Basis of Resveratrol® Anticancer Activity. <i>Medicines (Basel, Switzerland)</i> , 2019 , 6,	4.1	15
194	Anticancer properties of a new non-oxido vanadium(IV) complex with a catechol-modified 3,3Pdiindolylmethane ligand. <i>Journal of Inorganic Biochemistry</i> , 2019 , 194, 1-6	4.2	17
193	Retraction notice to "Notch-1 induces Epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells". <i>Cancer Letters</i> , 2018 , 423, 153	9.9	O
192	Retraction notice to "Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells" [Cancer Lett. 319(2) (2012) 173-181]. <i>Cancer Letters</i> , 2018 , 414, 313	9.9	
191	Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. <i>Carcinogenesis</i> , 2018 , 39, 307-317	4.6	20
190	Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. <i>International Journal of Biological Macromolecules</i> , 2018 , 106, 569-578	7.9	32
189	Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	33
188	Exosomes 2018 , 261-283		2
187	ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. <i>Molecular Cancer Research</i> , 2018 , 16, 187-196	6.6	22
186	Garcinia Fruits: Their Potential to Combat Metabolic Syndrome 2018 , 39-80		1
185	Green Tea Polyphenols: A Putative Mechanism for Cytotoxic Action against Cancer Cells 2018 , 305-332		2
184	Nutraceuticals and Natural Product Derivatives in the Premises of Disease Prevention 2018 , 111-135		
183	New ferrocene modified lawsone Mannich bases with anti-proliferative activity against tumor cells. <i>Journal of Saudi Chemical Society</i> , 2017 , 21, 105-110	4.3	16

(2016-2017)

182	Epigenetic basis of cancer health disparities: Looking beyond genetic differences. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2017 , 1868, 16-28	11.2	26
181	Emerging evidence for the role of differential tumor microenvironment in breast cancer racial disparity: a closer look at the surroundings. <i>Carcinogenesis</i> , 2017 , 38, 757-765	4.6	29
180	MicroRNAs in gynecological cancers: Small molecules with big implications. <i>Cancer Letters</i> , 2017 , 407, 123-138	9.9	67
179	Racial health disparities in ovarian cancer: not just black and white. <i>Journal of Ovarian Research</i> , 2017 , 10, 58	5.5	13
178	Hydroxytyrosol Induces Apoptosis and Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells. <i>Nutrition and Cancer</i> , 2017 , 69, 932-942	2.8	37
177	Improved anticancer and antiparasitic activity of new lawsone Mannich bases. <i>European Journal of Medicinal Chemistry</i> , 2017 , 126, 421-431	6.8	22
176	Cancer Chemoprevention by Phytochemicals: Nature® Healing Touch. <i>Molecules</i> , 2017 , 22,	4.8	75
175	MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	35
174	Biological basis of cancer health disparities: resources and challenges for research. <i>American Journal of Cancer Research</i> , 2017 , 7, 1-12	4.4	13
173	Modulation of Key Signaling Pathways in Cancer Cells by Dietary Factors 2016 , 273-284		
172	Pharmacological Intervention through Dietary Nutraceuticals in Gastrointestinal Neoplasia. <i>Critical Reviews in Food Science and Nutrition</i> , 2016 , 56, 1501-18	11.5	16
171	Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer. <i>Scientific Reports</i> , 2016 , 6, 28446	4.9	19
170	Retraction Note to: FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Research and Treatment, 2016 , 158, 607	4.4	3
169	Retraction Note to: Platelet-derived growth factor-D contributes to aggressiveness of breast cancer cells by up-regulating Notch and NF-B signaling pathways. <i>Breast Cancer Research and Treatment</i> , 2016 , 158, 605	4.4	
168	Glucose Metabolism Reprogrammed by Overexpression of IKKIPromotes Pancreatic Tumor Growth. <i>Cancer Research</i> , 2016 , 76, 7254-7264	10.1	26
167	Ferrocene-substituted 3,3?-diindolylmethanes with improved anticancer activity. <i>Applied Organometallic Chemistry</i> , 2016 , 30, 441-445	3.1	12
166	Epigenetics in Personalized Management of Lung Cancer. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 890, 111-22	3.6	13
165	The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 890, 57-74	3.6	68

Updates on the Promising Anticancer Activity of CDF, a Synthetic Curcumin Analogue **2016**, 3-12

163	Mobilization of Nuclear Copper by Green Tea Polyphenol Epicatechin-3-Gallate and Subsequent Prooxidant Breakage of Cellular DNA: Implications for Cancer Chemotherapy. <i>International Journal of Molecular Sciences</i> , 2016 , 18,	6.3	13
162	Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species. <i>Toxins</i> , 2016 , 8, 37	4.9	54
161	Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism. <i>International Journal of Molecular Sciences</i> , 2016 , 17,	6.3	13
160	Simulating hypoxia-induced acidic environment in cancer cells facilitates mobilization and redox-cycling of genomic copper by daidzein leading to pro-oxidant cell death: implications for the sensitization of resistant hypoxic cancer cells to therapeutic challenges. <i>BioMetals</i> , 2016 , 29, 299-310	3.4	9
159	Honokiol suppresses pancreatic tumor growth, metastasis and desmoplasia by interfering with tumor-stromal cross-talk. <i>Carcinogenesis</i> , 2016 , 37, 1052-1061	4.6	25
158	The bounty of nature for changing the cancer landscape. <i>Molecular Nutrition and Food Research</i> , 2016 , 60, 1251-63	5.9	18
157	Targeting increased copper levels in diethylnitrosamine induced hepatocellular carcinoma cells in rats by epigallocatechin-3-gallate. <i>Tumor Biology</i> , 2015 , 36, 8861-7	2.9	15
156	Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. <i>BMC Cancer</i> , 2015 , 15, 540	4.8	57
155	Role of JNK and NF- B in mediating the effect of combretastatin A-4 and brimamin on endothelial and carcinoma cells. <i>Cellular Oncology (Dordrecht)</i> , 2015 , 38, 463-78	7.2	4
154	miRNAs in Cancer Stem Cells 2015 , 137-161		
153	Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1. <i>Journal of Translational Medicine</i> , 2015 , 13, 227	8.5	8
152	Molecular targets of naturopathy in cancer research: bridge to modern medicine. <i>Nutrients</i> , 2015 , 7, 32	1 63∮	20
151	Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 26754-0	5 ⁶ ·3	31
150	Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin. <i>PLoS ONE</i> , 2015 , 10, e0139027	3.7	20
149	miR-20b is up-regulated in brain metastases from primary breast cancers. <i>Oncotarget</i> , 2015 , 6, 12188-9	53.3	37
148	Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog. <i>American Journal of Translational Research (discontinued)</i> , 2015 , 7, 298-308	3	14
147	Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. <i>Molecular Nutrition and Food Research</i> , 2014 , 58, 79-86	5.9	28

The Biological Roles of MicroRNAs in Cancer Stem Cells **2014**, 295-320

145	Anticancer phytochemical analogs 37: synthesis, characterization, molecular docking and cytotoxicity of novel plumbagin hydrazones against breast cancer cells. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2014 , 24, 2900-4	2.9	16
144	Recent progress on nutraceutical research in prostate cancer. <i>Cancer and Metastasis Reviews</i> , 2014 , 33, 629-40	9.6	20
143	The therapeutic potential of targeting the epithelial-mesenchymal transition in cancer. <i>Expert Opinion on Therapeutic Targets</i> , 2014 , 18, 731-45	6.4	24
142	The Biological Significance of Zinc in Inflammation and Aging 2014 , 15-27		4
141	Pancreatic cancer stem-like cells display aggressive behavior mediated via activation of FoxQ1. Journal of Biological Chemistry, 2014 , 289, 14520-33	5.4	42
140	Cancer chemopreventive pharmacology of phytochemicals derived from plants of dietary and non-dietary origin: implication for alternative and complementary approaches. <i>Phytochemistry Reviews</i> , 2014 , 13, 811-833	7.7	27
139	Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. <i>Cancer Letters</i> , 2014 , 351, 134-42	9.9	40
138	Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer. <i>Stem Cells and Development</i> , 2014 , 23, 1947-58	4.4	28
137	The Role of miRNAs in the Development of Normal Pancreas and Pancreatic Cancer, and Their Roles in Tumor Progression 2014 , 179-198		
136	Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action. <i>Molecular Nutrition and Food Research</i> , 2014 , 58, 437-46	5.9	73
135	Targeting Cancer Stem Cells for Overcoming Drug Resistance and Cancer Progression 2014 , 461-471		1
134	Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. <i>American Journal of Translational Research (discontinued)</i> , 2014 , 6, 384-90	3	37
133	MicroRNAs in breast cancer therapy. Current Pharmaceutical Design, 2014 , 20, 5268-74	3.3	14
132	Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. <i>Current Stem Cell Research and Therapy</i> , 2014 , 9, 22-35	3.6	43
131	MicroRNA Targeted Therapy for Overcoming Drug Resistance, Reversal of EMT and Elimination of Cancer Stem Cells in Prostate and Pancreatic Cancer 2014 , 199-217		3
130	The Therapeutic Role of MicroRNAs in Human Gliomas 2014 , 1-27		
129	Molecular Targeted Therapy for Brain Metastatic Breast Cancers: Current Updates 2014 , 65-75		

miRNA Targeted Therapy in Lung Cancer **2014**, 99-114

127	The prooxidant action of dietary antioxidants leading to cellular DNA breakage and anticancer effects: implications for chemotherapeutic action against cancer. <i>Cell Biochemistry and Biophysics</i> , 2013 , 67, 431-8	3.2	30
126	Perspectives on the role of isoflavones in prostate cancer. AAPS Journal, 2013, 15, 991-1000	3.7	30
125	Metal-based anticancer agents: targeting androgen-dependent and androgen-independent prostate and COX-positive pancreatic cancer cells by phenanthrenequinone semicarbazone and its metal complexes. <i>Transition Metal Chemistry</i> , 2013 , 38, 665-673	2.1	3
124	Targeting triple negative breast cancer cells by N3-substituted 9,10-phenanthrenequinone thiosemicarbazones and their metal complexes. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2013 , 114, 114-9	4.4	15
123	Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. <i>Journal of Hematology and Oncology</i> , 2013 , 6, 77	22.4	99
122	Epigenetic Regulations of mRNAs and miRNAs by Nutraceuticals 2013 , 251-272		
121	Pancreatic cancer stem cells: emerging target for designing novel therapy. <i>Cancer Letters</i> , 2013 , 338, 94-100	9.9	98
120	Antioxidant function of isoflavone and 3,3Pdiindolylmethane: are they important for cancer prevention and therapy?. <i>Antioxidants and Redox Signaling</i> , 2013 , 19, 139-50	8.4	38
119	Novel strategies targeting cancer stem cells through phytochemicals and their analogs. <i>Drug Delivery and Translational Research</i> , 2013 , 3, 165-82	6.2	54
118	Resistance and DNA Repair Mechanisms of Cancer Stem Cells: Potential Molecular Targets for Therapy 2013 , 33-52		
117	Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. <i>Current Protocols in Pharmacology</i> , 2013 , Chapter 14, Unit 14.25	4.1	148
116	The role of cancer stem cells and miRNAs in defining the complexities of brain metastasis. <i>Journal of Cellular Physiology</i> , 2013 , 228, 36-42	7	8
115	Pathways to breast cancer recurrence. ISRN Oncology, 2013, 2013, 290568		66
114	Targeting MicroRNAs for personalized cancer therapy. <i>Medical Principles and Practice</i> , 2013 , 22, 415-7	2.1	11
113	Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants. <i>Cell Death and Disease</i> , 2013 , 4, e660	9.8	71
112	Perspectives on New Synthetic Curcumin Analogs and their Potential Anticancer Properties. <i>Current Pharmaceutical Design</i> , 2013 , 19, 2047-2069	3.3	6
111	3, 3PDiindolylmethane enhances the effectiveness of herceptin against HER-2/neu-expressing breast cancer cells. <i>PLoS ONE</i> , 2013 , 8, e54657	3.7	34

(2012-2013)

110	Erlotinib resistance in lung cancer: current progress and future perspectives. <i>Frontiers in Pharmacology</i> , 2013 , 4, 15	5.6	37
109	Perspectives on new synthetic curcumin analogs and their potential anticancer properties. <i>Current Pharmaceutical Design</i> , 2013 , 19, 2047-69	3.3	115
108	Perspectives on New Synthetic Curcumin Analogs and their Potential Anticancer Properties. <i>Current Pharmaceutical Design</i> , 2013 , 19, 2047-2069	3.3	77
107	Targeted regulation of PI3K/Akt/mTOR/NF- B signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2013 , 13, 1002-13	2.2	116
106	Deregulation of PI3K/Akt/mTOR signaling pathways by isoflavones and its implication in cancer treatment. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2013 , 13, 1014-24	2.2	30
105	Current Understanding of Drug Resistance Mechanisms and Therapeutic Targets in HER2 Overexpressing Breast Cancers 2013 , 261-274		1
104	The Biology of the Deadly Love Connection Between Obesity, Diabetes, and Breast Cancer 2013 , 117-	-142	
103	MicroRNAs in Breast Cancer Research: Progress and Promise 2013 , 399-413		
102	Stem Cells and Cancer 2013 , 413-433		
101	The Complexities of Racial Disparity in Breast Cancer 2013 , 35-46		1
100	The Complexities of Racial Disparity in Breast Cancer 2013 , 35-46 A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and Structural Characterization. <i>Inorganic Chemistry Communication</i> , 2012 , 20, 252-258	3.1	13
	A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and	3.1	13
100	A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and Structural Characterization. <i>Inorganic Chemistry Communication</i> , 2012 , 20, 252-258 The immunological contribution of NF-B within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> ,		13
100	A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and Structural Characterization. <i>Inorganic Chemistry Communication</i> , 2012 , 20, 252-258 The immunological contribution of NF-B within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2012 , 1825, 160-72 The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> ,	11.2	13
100 99 98	A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and Structural Characterization. <i>Inorganic Chemistry Communication</i> , 2012 , 20, 252-258 The immunological contribution of NF-B within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2012 , 1825, 160-72 The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2012 , 1826, 272-96 Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin	11.2	13 16 94 58
100 99 98 97	A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and Structural Characterization. <i>Inorganic Chemistry Communication</i> , 2012 , 20, 252-258 The immunological contribution of NF-B within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2012 , 1825, 160-72 The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2012 , 1826, 272-96 Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 3104-8 Recent updates on the role of microRNAs in prostate cancer. <i>Journal of Hematology and Oncology</i> ,	11.2	13 16 94 58
100 99 98 97 96	A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and Structural Characterization. <i>Inorganic Chemistry Communication</i> , 2012 , 20, 252-258 The immunological contribution of NF-B within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2012 , 1825, 160-72 The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2012 , 1826, 272-96 Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 3104-8 Recent updates on the role of microRNAs in prostate cancer. <i>Journal of Hematology and Oncology</i> , 2012 , 5, 9	11.2 11.2 2.9	13 16 94 58 57

92	Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. <i>Cancer Research</i> , 2012 , 72, 335-45	10.1	251
91	Targeting the Hedgehog signaling pathway for cancer therapy. <i>Expert Opinion on Therapeutic Targets</i> , 2012 , 16, 49-66	6.4	61
90	ATRA-hydrazonate derivatives and their copper complexes against hormone-dependent (MCF-7), hormone-independent (MDA-MB-231and BT-20) breast cancer and androgen-independent (PC3) prostate cancer cell lines. <i>Inorganic Chemistry Communication</i> , 2012 , 23, 17-20	3.1	4
89	Apogossypolone, derivative of gossypol, mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage. <i>European Journal of Pharmaceutical Sciences</i> , 2012 , 47, 280-6	5.1	14
88	Targeting bone remodeling by isoflavone and 3,3Pdiindolylmethane in the context of prostate cancer bone metastasis. <i>PLoS ONE</i> , 2012 , 7, e33011	3.7	35
87	Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. <i>PLoS ONE</i> , 2012 , 7, e43726	3.7	99
86	Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. <i>PLoS ONE</i> , 2012 , 7, e50165	3.7	133
85	Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. <i>Frontiers in Bioscience - Elite</i> , 2012 , 4, 410-25	1.6	24
84	Inclusion complex of novel curcumin analogue CDF and Exyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. <i>Pharmaceutical Research</i> , 2012 , 29, 1775-86	4.5	98
83	Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer. <i>International Journal of Molecular Sciences</i> , 2012 , 13, 9627-41	6.3	40
82	The role of microRNAs in breast cancer migration, invasion and metastasis. <i>International Journal of Molecular Sciences</i> , 2012 , 13, 13414-37	6.3	133
81	Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. <i>Molecular Cancer Therapeutics</i> , 2012 , 11, 2193-201	6.1	123
80	Perspectives on medicinal properties of mangiferin. Mini-Reviews in Medicinal Chemistry, 2012, 12, 412-	25 .2	64
79	Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. <i>Epigenetics</i> , 2012 , 7, 940-9	5.7	97
78	From body art to anticancer activities: perspectives on medicinal properties of henna. <i>Current Drug Targets</i> , 2012 , 13, 1777-98	3	55
77	Anticancer action of garcinol in vitro and in vivo is in part mediated through inhibition of STAT-3 signaling. <i>Carcinogenesis</i> , 2012 , 33, 2450-6	4.6	56
76	Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. <i>Cancer Prevention Research</i> , 2012 , 5, 355-64	3.2	273
75	Role of Novel Nutraceuticals Garcinol, Plumbagin and Mangiferin in the Prevention and Therapy of Human Malignancies: Mechanisms of Anticancer Activity 2012 , 179-199		7

74	A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. <i>Current Drug Targets</i> , 2012 , 13, 1738-49	3	105
73	Targeting CSC-related miRNAs for cancer therapy by natural agents. Current Drug Targets, 2012, 13, 18	358-68	42
72	Ascorbic acid in cancer chemoprevention: translational perspectives and efficacy. <i>Current Drug Targets</i> , 2012 , 13, 1757-71	3	26
71	Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. <i>Current Drug Targets</i> , 2012 , 13, 1750-6	3	106
70	Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. <i>PLoS ONE</i> , 2012 , 7, e45045	3.7	78
69	Augmenting the Efficacy of Chemo- and Radio-Therapy by Nutraceuticals: Evidence from Pre-clinical and Clinical Trials 2012 , 355-376		
68	MicroRNAs in Cancer Invasion and Metastasis 2011 , 389-413		1
67	Cancer selective metallocenedicarboxylates of the fungal cytotoxin illudin M. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 6177-82	8.3	27
66	(Carboxydiamine)Pt(II) complexes of a combretastatin A-4 analogous chalcone: the influence of the diamine ligand on DNA binding and anticancer effects. <i>MedChemComm</i> , 2011 , 2, 493	5	11
65	Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. <i>Cancer Letters</i> , 2011 , 307, 26-36	9.9	261
64	Role of Nuclear Factor-kappa B Signaling in Anticancer Properties of Indole Compounds. <i>Journal of Experimental and Clinical Medicine</i> , 2011 , 3, 55-62		8
63	Induction of cancer cell death by isoflavone: the role of multiple signaling pathways. <i>Nutrients</i> , 2011 , 3, 877-96	6.7	42
62	Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. <i>Obesity Reviews</i> , 2011 , 12, 1050-62	10.6	45
61	The complexities of obesity and diabetes with the development and progression of pancreatic cancer. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2011 , 1815, 135-46	11.2	52
60	Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism. <i>BioMetals</i> , 2011 , 24, 1169-78	3.4	45
59	Platelet-derived growth factor-D contributes to aggressiveness of breast cancer cells by up-regulating Notch and NF- B signaling pathways. <i>Breast Cancer Research and Treatment</i> , 2011 , 126, 15-25	4.4	52
58	Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. <i>Molecular Nutrition and Food Research</i> , 2011 , 55, 553-9	5.9	73
57	3,3PDiindolylmethane enhances taxotere-induced growth inhibition of breast cancer cells through downregulation of FoxM1. <i>International Journal of Cancer</i> , 2011 , 129, 1781-91	7.5	38

56	Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. <i>Journal of Cellular Biochemistry</i> , 2011 , 112, 78-88	4.7	74
55	Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF- B signaling pathways. <i>Journal of Cellular Biochemistry</i> , 2011 , 112, 1055-65	4.7	72
54	Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. <i>Journal of Cellular Biochemistry</i> , 2011 , 112, 2296-306	4.7	171
53	Synthesis, characterization and anti-tumor activity of moxifloxacin-copper complexes against breast cancer cell lines. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2011 , 21, 1802-6	2.9	29
52	Tumor cell growth inhibition is correlated with levels of capsaicin present in hot peppers. <i>Nutrition and Cancer</i> , 2011 , 63, 272-81	2.8	19
51	Pancreatic cancer: understanding and overcoming chemoresistance. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2011 , 8, 27-33	24.2	257
50	Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. <i>Cancer Prevention Research</i> , 2011 , 4, 1495-506	3.2	35
49	Mechanisms and therapeutic implications of cell death induction by indole compounds. <i>Cancers</i> , 2011 , 3, 2955-74	6.6	27
48	Role of vacuolar ATPase in the trafficking of renal type IIa sodium-phosphate cotransporter. <i>Cellular Physiology and Biochemistry</i> , 2011 , 27, 703-14	3.9	7
47	Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. <i>Cancer Research</i> , 2011 , 71, 3400-9	10.1	155
46	Up-regulation of sonic hedgehog contributes to TGF-II-induced epithelial to mesenchymal transition in NSCLC cells. <i>PLoS ONE</i> , 2011 , 6, e16068	3.7	109
45	Activated K-ras and INK4a/Arf deficiency cooperate during the development of pancreatic cancer by activation of Notch and NF- B signaling pathways. <i>PLoS ONE</i> , 2011 , 6, e20537	3.7	35
44	Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signaling. <i>Frontiers in Bioscience - Elite</i> , 2011 , 3, 1483-92	1.6	25
43	Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. <i>Anticancer Research</i> , 2011 , 31, 1105-13	2.3	58
42	Anticancer properties of indole compounds: mechanism of apoptosis induction and role in chemotherapy. <i>Current Drug Targets</i> , 2010 , 11, 652-66	3	88
41	Forkhead box M1 transcription factor: a novel target for cancer therapy. <i>Cancer Treatment Reviews</i> , 2010 , 36, 151-6	14.4	126
40	Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. <i>Cancer Research</i> , 2010 , 70, 3606-17	10.1	376
39	Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. <i>Cancer Letters</i> , 2010 , 292, 141-8	9.9	109

(2009-2010)

38	Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. <i>Drug Resistance Updates</i> , 2010 , 13, 109-18	23.2	273
37	FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. <i>Breast Cancer Research and Treatment</i> , 2010 , 122, 337-46	4.4	115
36	Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer. <i>Pharmaceutical Research</i> , 2010 , 27, 979-88	4.5	64
35	FoxM1 is a novel target of a natural agent in pancreatic cancer. <i>Pharmaceutical Research</i> , 2010 , 27, 1159)- <u>46.8</u> 5	49
34	Emerging roles of PDGF-D signaling pathway in tumor development and progression. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2010 , 1806, 122-30	11.2	61
33	Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2010 , 1806, 258-67	11.2	120
32	Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. <i>Journal of Cellular Biochemistry</i> , 2010 , 109, 726-36	4.7	154
31	Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells. Journal of Cellular Biochemistry, 2010 , 109, 1134-41	4.7	64
30	Fluorinated 2Phydroxychalcones as garcinol analogs with enhanced antioxidant and anticancer activities. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 5818-21	2.9	51
29	Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. <i>PLoS ONE</i> , 2010 , 5, e12445	3.7	318
28	Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- KappaB signaling. <i>Frontiers in Bioscience - Elite</i> , 2009 , E3, 1483	1.6	4
27	TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: involvement of Notch-1 signaling pathway. <i>Cancer Research</i> , 2009 , 69, 2757-65	10.1	71
26	Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells. <i>Mutagenesis</i> , 2009 , 24, 413-8	2.8	39
25	Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. <i>Cancer Research</i> , 2009 , 69, 2400-7	10.1	519
24	Inactivation of uPA and its receptor uPAR by 3,3Pdiindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. <i>Journal of Cellular Biochemistry</i> , 2009 , 107, 516-27	4.7	46
23	Down-regulation of uPA and uPAR by 3,3Pdiindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. <i>Journal of Cellular Biochemistry</i> , 2009 , 108, 916-25	4.7	50
22	miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. <i>Stem Cells</i> , 2009 , 27, 1712-21	5.8	264
21	Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. <i>Journal of Hematology and Oncology</i> , 2009 , 2, 38	22.4	124

20	3,3PDiindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin down-regulation. <i>Cancer Research</i> , 2009 , 69, 4468-75	10.1	59
19	Aging and inflammation: etiological culprits of cancer. Current Aging Science, 2009, 2, 174-86	2.2	61
18	Evolving role of uPA/uPAR system in human cancers. Cancer Treatment Reviews, 2008, 34, 122-36	14.4	334
17	Novel regulatory function for NHERF-1 in Npt2a transcription. <i>American Journal of Physiology - Renal Physiology</i> , 2008 , 294, F840-9	4.3	21
16	Apoptosis-inducing effect of erlotinib is potentiated by 3,3Pdiindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. <i>Molecular Cancer Therapeutics</i> , 2008 , 7, 1708-19	6.1	75
15	Chemoprevention of pancreatic cancer: characterization of Par-4 and its modulation by 3,3P diindolylmethane (DIM). <i>Pharmaceutical Research</i> , 2008 , 25, 2117-24	4.5	52
14	Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. <i>Journal of Cellular Biochemistry</i> , 2008 , 105, 1461-71	4.7	129
13	From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. <i>Cancer Therapy</i> , 2008 , 6, 495-510		102
12	Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. <i>Toxicology Letters</i> , 2005 , 159, 1-12	4.4	78
11	Parathyroid hormone regulation of NA+,K+-ATPase requires the PDZ 1 domain of sodium hydrogen exchanger regulatory factor-1 in opossum kidney cells. <i>Journal of the American Society of</i>		a-r
11	Nephrology: JASN, 2005 , 16, 2598-607	12.7	31
10		4.4	20
	Nephrology: JASN, 2005, 16, 2598-607 Bilirubin/biliverdin-Cu(II) induced DNA breakage; reaction mechanism and biological significance.		
10	Nephrology: JASN, 2005, 16, 2598-607 Bilirubin/biliverdin-Cu(II) induced DNA breakage; reaction mechanism and biological significance. Toxicology Letters, 2002, 131, 181-9 Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: a	4.4	20
10	Nephrology: JASN, 2005, 16, 2598-607 Bilirubin/biliverdin-Cu(II) induced DNA breakage; reaction mechanism and biological significance. Toxicology Letters, 2002, 131, 181-9 Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: a structure-activity study. Chemico-Biological Interactions, 2001, 137, 59-74 Oxidative DNA damage by capsaicin and dihydrocapsaicin in the presence of Cu(II). Cancer Letters,	4.4	20
10 9 8	Nephrology: JASN, 2005, 16, 2598-607 Bilirubin/biliverdin-Cu(II) induced DNA breakage; reaction mechanism and biological significance. Toxicology Letters, 2002, 131, 181-9 Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: a structure-activity study. Chemico-Biological Interactions, 2001, 137, 59-74 Oxidative DNA damage by capsaicin and dihydrocapsaicin in the presence of Cu(II). Cancer Letters, 2001, 169, 139-46 Strand scission in DNA induced by 5-hydroxytryptamine (serotonin) in the presence of copper ions.	4·4 5 9·9	20 39 39
10 9 8 7	Nephrology: JASN, 2005, 16, 2598-607 Bilirubin/biliverdin-Cu(II) induced DNA breakage; reaction mechanism and biological significance. Toxicology Letters, 2002, 131, 181-9 Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: a structure-activity study. Chemico-Biological Interactions, 2001, 137, 59-74 Oxidative DNA damage by capsaicin and dihydrocapsaicin in the presence of Cu(II). Cancer Letters, 2001, 169, 139-46 Strand scission in DNA induced by 5-hydroxytryptamine (serotonin) in the presence of copper ions. Neuroscience Letters, 2001, 308, 83-6 Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chemico-Biological	4·4 5 9·9	20 39 39
10 9 8 7 6	Nephrology: JASN, 2005, 16, 2598-607 Bilirubin/biliverdin-Cu(II) induced DNA breakage; reaction mechanism and biological significance. Toxicology Letters, 2002, 131, 181-9 Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: a structure-activity study. Chemico-Biological Interactions, 2001, 137, 59-74 Oxidative DNA damage by capsaicin and dihydrocapsaicin in the presence of Cu(II). Cancer Letters, 2001, 169, 139-46 Strand scission in DNA induced by 5-hydroxytryptamine (serotonin) in the presence of copper ions. Neuroscience Letters, 2001, 308, 83-6 Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chemico-Biological Interactions, 2000, 125, 177-89 Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived	4·4 5 9·9 3·3	20 39 39 18 168

- Bilirubin-Cu(II) complex degrades DNA. Biochimica Et Biophysica Acta General Subjects, 1999, 1428, 201-
- The Role of microRNAs in Tumor Progression and Therapy153-165

23